
Revisiting Anomaly-based

Network Intrusion

Detection Systems

Damiano Bolzoni

Revisiting Anomaly-based Network Intrusion Detection
Systems

Damiano Bolzoni

Composition of the Graduation Committee:

Prof. dr. S. Etalle Universiteit Twente (promotor)
Prof. dr. P.H. Hartel Universiteit Twente (promotor)
Prof. dr. ir. B.R.M.H. Haverkort Universiteit Twente
Prof. dr. S.J. Mullender Universiteit Twente
Prof. dr. L.V. Mancini Università La Sapienza di Roma
Dr. ir. H.J. Bos Vrije Universiteit Amsterdam
Dr. F. Piessens Katholieke Universiteit Leuven
Dr. ir. R.N.J. Veldhuis Universiteit Twente

Distributed and Embedded Security Group
P.O. Box 217, 7500 AE, Enschede, The Netherlands.

This research is supported by the research program Sentinels of STW
(http://www.sentinels.nl), under the project number 06679.

CTIT PhD Thesis Series Number 09-147
Centre for Telematics and Information Technology (CTIT)
P.O. Box 217-7500 AE Enschede-The Netherlands.

IPA: 2009-14
The work in this thesis has been carried out under the
auspices of the research school IPA (Institute for Programming
research and Algorithms).

ISBN: 978-90-365-2853-5
ISSN: 1381-3617
DOI: 10.3990/1.9789036528535

Cover design: Damiano Bolzoni and Nienke Timmer.
Printed by Wöhrmann Print Service.

Copyright c© 2009 Damiano Bolzoni, Enschede, The Netherlands.

Revisiting Anomaly-based Network Intrusion Detection
Systems

DISSERTATION

to obtain
the doctor’s degree at the University of Twente

on the authority of the rector magnificus,
prof. dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Thursday, 25th of June 2009 at 13.15

by

Damiano Bolzoni

born on 19th of January 1981,
in Torino, Italy

The dissertation is approved by:

Prof. dr. S. Etalle Universiteit Twente (promotor)
Prof. dr. P.H. Hartel Universiteit Twente (promotor)

Ambition:
aspire to climb as high as you can dream

Abstract

Intrusion detection systems (IDSs) are well-known and widely-deployed se-
curity tools to detect cyber-attacks and malicious activities in computer systems
and networks.

A signature-based IDS works similar to anti-virus software. It employs a sig-
nature database of known attacks, and a successful match with current input raises
an alert. A signature-based IDS cannot detect unknown attacks, either because the
database is out of date or because no signature is available yet.

To overcome this limitation, researchers have been developing anomaly-based
IDSs. An anomaly-based IDS works by building a model of normal data/usage
patterns during a training phase, then it compares new inputs to the model (using a
similarity metric). A significant deviation is marked as an anomaly. An anomaly-
based IDS is able to detect previously unknown, or modifications of well-known,
attacks as soon as they take place (i.e., so called zero-day attacks) and targeted
attacks.

Cyber-attacks and breaches of information security appear to be increasing in
frequency and impact. Signature-based IDSs are likely to miss an increasingly
number of attack attempts, as cyber-attacks diversify. Thus, one would expect a
large number of anomaly-based IDSs to have been deployed to detect the newest
disruptive attacks. However, most IDSs in use today are still signature-based, and
few anomaly-based IDSs have been deployed in production environments.

Up to now a signature-based IDS has been easier to implement and simpler
to configure and maintain than an anomaly-based IDS, i.e., it is easier and less
expensive to use. We see in these limitations the main reason why anomaly-based
systems have not been widely deployed, despite research that has been conducted
for more than a decade.

To address these limitations we have developed SilentDefense, a comprehen-
sive anomaly-based intrusion detection architecture that outperforms competitors
not only in terms of attack detection and false alert rates, but it reduces the user

vii

effort as well. Several integrated components constitute the architecture of Silent-
Defense: each component can work independently, but they can be plugged into
several configurations to offer diverse (automated) facilities to users, thus reduc-
ing user effort. In particular, SilentDefense:

• improves the well-known detection algorithm PAYL (for the HTTP proto-
col, from 90% up to 100% detection rate and from 0,17% down to 0,0016%
false alert rate) by adding a neural network that pre-processes network traf-
fic;

• reduces the number of false positive alerts (between 50% and 100% fewer
alerts) by correlating alerts generated by an intrusion detection system (be it
signature- or anomaly-based) monitoring the incoming traffic with a content-
based analysis of the outgoing traffic;

• automatically generates regular expressions to validate incoming HTTP re-
quests, that users can edit to tune the anomaly-based detection engine;

• automates the classification of anomaly-based alerts by extracting the pay-
load of previous alerts which can be classified using both standard and user-
defined taxonomies.

SilentDefense is the first systematic attempt to develop an anomaly-based in-
trusion detection system with a high degree of usability. However, SilentDefense
(and in general anomaly detection) is not an alternative to signature-based sys-
tems. In fact, we believe that the best chance to detect an attack is provided by
the combination of the two approaches. A signature-based system works better
for well-known applications and systems (e.g., the Windows operating systems),
while SilentDefense can detect zero-day and targeted attacks. The latter attack
type usually targets custom-developed software, such as web applications devel-
oped by corporations for their internal users or proprietary systems used in critical
infrastructures.

viii

Acknowledgements

In the past four years I have met many people, and had a lot of fun. It is
difficult to summarize everything in a couple of pages, but I will try my best!

The most important thing I have learnt in 15 years of running is that even the
fastest runner of all time needs a skilled coach to become a “champion”. During
my PhD, I was lucky enough to have two very skilled coaches. As my science
training is far from being completed, I hope to learn more from them.

Sandro has been my daily supervisor, however he has been much more than
that. He is a genuine friend, and a superlative teacher. When I first met him in
Milan in February 2005 I understood he was not a common researcher, and that
very first feeling has been proven right in the following years. What still puzzles
me about Sandro is his ability to grasp new ideas and concepts so quickly from
scratch (ranging from intrusion detection to risk management). He did so well
that Emmanuele and I thought he could be a perfect business partner... ;)

I have been writing with Pieter my very first scientific paper and some crucial
parts of this thesis. It took me quite a while to understand how he wants things to
be written down and organized. However, I think we have been managing this task
nicely. I truly thank Pieter for having improved my well known “writing laziness”,
and forced me to provide stronger motivations to explain crude experimental num-
bers (and I am pretty sure that is the main reason for our latest success).

I have known Emmanuele for 13 years. We met in high school, attended the
same university, worked together first in KPMG and now here at the University
of Twente. Emmanuele is brilliant, and quite often when one of us comes out
with a new idea, the other one is already thinking how to improve it and refine
it (even until 6am :) Our passion brought us to many different places around the
world (literally). In Rome, when we attended the “Young IT experts” meeting
(our first IT event) whilst still in high school, London, San Francisco, and Las
Vegas. Despite the fact we are always busy with something, we manage to have a

ix

lot of fun and I hope we will keep going on in the same way! (mai ipse dixit fu
più azzeccato...”a giugno professore!” :)

Emmanuele and I have been dreaming about starting up our own business
since we were university students. It took us several years to have all of the in-
gredients, and we could not have done this without help and support from Sandro.
SecurityMatters is the next big challenge for the three of us, and no matter what
will happen next, we already proved to be a great team.

Some very important people I had the pleasure to meet: Andreas, Anna,
Daniel, Dimitrios, the DIES staff (including Marlous, Nicole and Thelma), i ragazzi
del DSI, Dulce, Emma, Enrico (who kindly accepted to be a paranimf), il mio os-
teopata Fabio, Filippo e Francesca (e la piccola Violante), tutti i ragazzi (e non)
del campo di San Giuliano, tutti i ragazzi (e non) dell’ufficio KPMG di Treviso
(in particolare Rudy e Marco), Laura, Lianne, Luca, the Macandra residents, di-
versi Marco, Mirko e Sonia, Nadine, Nienke (thanks for the Dutch abstract), many
Olgas, il Prof (mio Maestro nella corsa), Sasha, Simone, Stefano, i miei amici di
Schio e dintorni, my Russian friends in A’dam and R’dam (Dina, Ira, Lena, Sonya,
Tanya), the AC Tion guys, Uros, Wouter, and last but not least Zlatko.

And now, the most important acknowledgement.

Cara Mamma,
mi hai scritto diverse lettere struggenti nel corso di questi anni (Carlotta le

definisce, come ben sai, “da libro Cuore”). Non ho mai risposto a quelle lettere,
perchè non sapevo trovare le parole per consolare il tuo dolore. Se ho deciso
di venire in Olanda non è stato per sfuggire a qualcosa, o qualcuno. Ciò a cui
io aspiro non è possibile in Italia, questo lo sai bene anche tu, e se ne avessi
l’opportunità rifarei ogni cosa dal principio.

C’è comunque qualcosa che rimpiango: avrei voluto poterti aiutare di più du-
rante la malattia di papà. Hai sacrificato te stessa per permettere a me di contin-
uare a sognare: tra tutti i regali che si possono ricevere dai propri genitori, questo
è senz’altro il più grande.

Non potrò mai saldare il mio debito con te: il dottorato è quanto ho da offrirti
in cambio di tutti i sacrifici che hai fatto e dei dispiaceri che hai sopportato. Per
quanto i kilometri possano separarci, non possono cambiare i sentimenti. Un
affettuoso abbraccio va anche a mia nonna Anna e a mia sorella Carlotta, ed un
pensiero a mio Papà che oggi non può essere qui con noi.

Enschede, June 2009.

x

Contents

1 Introduction 1
1.1 Motivation . 3

1.1.1 Running a signature-based IDS 4
1.1.2 Running an anomaly-based IDS 4

1.2 Research Question . 6
1.3 Thesis Overview . 9
1.4 Conclusion and Outlook . 11

2 Taxonomy of Intrusion Detection Systems 13
2.1 Host- or Network-based Systems 15

2.1.1 Host-based Systems . 15
2.1.2 Network-based Systems 15
2.1.3 Honeypots . 16

2.2 Signature- or Anomaly-based Systems 17
2.2.1 Signature-based Systems 17
2.2.2 Anomaly-based Systems 18

2.3 State-of-the-art of Anomaly-based Intrusion Detection Systems . . 19
2.3.1 Classification of Anomaly-based Network Intrusion De-

tection Systems . 20
2.3.2 Payload- vs Header-based Approaches 21
2.3.3 Building the Model . 25
2.3.4 Similarity Metric . 26

2.4 Conclusion . 26

xi

CONTENTS

3 POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System 29
3.1 Architecture . 30

3.1.1 SOM Classification Model 30
3.1.2 PAYL Classification Model 32
3.1.3 POSEIDON . 34

3.2 Tuning and Benchmarks . 35
3.2.1 Benchmarks . 36

3.3 Related Work . 40
3.4 Conclusion . 42

4 ATLANTIDES: an Architecture for Alert Verification in Network In-
trusion Detection Systems 43
4.1 Preliminaries . 45

4.1.1 The Base-rate Fallacy . 45
4.1.2 False Positives in Signature-based Systems 46
4.1.3 False Positives in Anomaly-based Systems 47

4.2 Architecture . 47
4.2.1 The Output Anomaly Detector 49

4.3 Benchmarks . 50
4.3.1 Tests with a Private Data Set 50
4.3.2 Tests with the DARPA 1999 Data Set 51

4.4 Related Work . 53
4.5 Conclusion . 56

5 Boosting Web Intrusion Detection Systems by Inferring Regular Lan-
guages 57
5.1 Detecting Data-flow Attacks to Web Applications 59

5.1.1 Exploiting Regularities 59
5.1.2 Regular and Irregular Parameters 60

5.2 Sphinx Detection Engine . 60
5.2.1 Building the Model . 61
5.2.2 The Regular-text Methodology 62
5.2.3 The Raw-data Methodology 66
5.2.4 Using the Model . 66

5.3 Benchmarks . 67
5.3.1 Comparative Benchmarks 69

xii

CONTENTS

5.3.2 Testing the Regular-expression Engine 69
5.3.3 Testing Sphinx on the Complete Input 71

5.4 Signature Generation for Signature-based Systems 72
5.5 Related Work . 74
5.6 Conclusion . 75

6 Panacea: Automating the Classification of Attacks for Anomaly-based
Network Intrusion Detection Systems 77
6.1 Architecture . 79

6.1.1 Alert Information Extractor 79
6.1.2 Attack Classification Engine 82
6.1.3 Implementation . 86

6.2 Benchmarks . 86
6.2.1 Tests with DSA . 89
6.2.2 Tests with DSB . 90
6.2.3 Tests with DSC . 91
6.2.4 Summary of Benchmark Results 92
6.2.5 Usability in Panacea . 93

6.3 Related Work . 94
6.4 Conclusion . 95

7 Concluding Remarks 97

xiii

Chapter 1
Introduction

At the dawn of the computer age, computer systems were quite simple. A ba-
sic input output system allowed a single user to perform a sequence of tasks. No
real computer security mechanism was in place, as a single computer was almost
as big as a room: security was provided by keys and locks on building doors. The
technological advances in hardware and software computer technology first, and
the growth of the Internet second, revolutionized the computer (and the human)
world. Nowadays, computer systems have evolved to multi-user systems that al-
low many tasks to run concurrently, and they fit a palm of a hand. The Internet
connects computer systems all around the world and users can access diverse on-
line services, ranging from e-banking to on-line communities. Computers have
penetrated our life in depth, and in general they have positively affected our life
style. However, there are negative sides as well.

Computers store and carry all sorts of personal and confidential data, e.g.,
credit card numbers, medical records, etc. The same applies to corporations, who
handle vital information for their business through computer networks, e.g., con-
fidential industrial process data. Thus, digital information is an asset of increasing
value and the safeguarding of computer systems and of the data they contain has
long become a critical issue for modern society. The information processed by
our computers and carried by our networks is also of great interest to modern
criminals, who are still interested in bank robberies, extorting money, fraud, and
stealing secrets for profit. The criminals are diverting their attention to the digital
world.

As computers got small enough to fit on a desk, and operating systems became
more complex, computer architects began to include the computer equivalent of
locks and keys in their systems. The first security mechanisms put in place to
allow only authorized users to operate were user accounts and passwords. Be-

1

Chapter 1. Introduction

cause malicious users can bypass such a simple line of defence, a new concept
made its way. Similar to what happens in the real world, there was a need for
digital watchers, to monitor system operations and alert on suspicious events. An
Intrusion Detection System (IDS) is the computer system equivalent of a burglar
alarm: this concept was introduced by Anderson [14] in 1980 and later formal-
ized by Denning [45] in her seminal work. At the very beginning, an IDS was just
used to monitor system logs (e.g., a user logging in at midnight, when nobody is
supposed to be working, is suspicious).

The need to allow different users to operate and access diverse resources on
the same system required security mechanisms to evolve. Today, three heteroge-
neous technologies currently work in combination: authentication, authorization
and auditing (the “gold standard”, Lampson [75]). Authentication is the process
of veryfing the identity of a party who requires access to a certain resource, by
means of some credentials she can show (e.g., a password). Authorization deter-
mines (through access control mechanisms and policies) how parties can interact,
which actions parties are allowed to perform and which data parties are allowed
to access or modify. Usually, a party is first requested to authenticate to interact
with another. During the auditing process, activity evidences are collected and
analysed to discover security violations and diagnose their causes. Sandhu and
Samarati [108] make the link between auditing and intrusion detection explicit, as
they call the latter a case of on-line auditing. Meanwhile the IDS has evolved as
well, to monitor system internals more in depth (e.g., syscalls) and to cope with
network monitoring.

The universal use of the Internet has made it more difficult to achieve a high
security level. Nowadays, systems work in distributed environments and they are
typically built upon multiple heterogeneous technologies. The gold standard fails
to protect modern systems. Attackers target web applications instead of Telnet
ports, and they write automatic scanners to discover exploitable network services.
For instance, think of web applications released by different sources, ranging from
professional to hobbyist programmers: an error in the user authentication mecha-
nism can expose the whole application to attacks. Lampson argues that this is due
to the unwillingness of people to pay for the direct and indirect costs of achieving
a high level of security [75] . Secure programming and configuration set up, user
inconvenience and obsolete features all lead to increased costs. As a result, it is
difficult to ensure software quality and resilience.

Cyber-attacks and breaches of information security appear to be increasing in
frequency and impact (see the Internet Storm Center [134] for weekly and monthly
single attack rates). Few observers are willing to ignore the possibility that future
attacks could have much more severe consequences than what has been observed

2

1.1. Motivation

to date. Hence, a more powerful second line of defence is needed more than ever,
to patrol modern computer networks.

Despite the fact that intrusion detection has been an active topic of research
for the last decade to enhance attack detection, current IDSs have hardly increased
their effectiveness over the years, and most advances in intrusion detection have
remained within the academic domain.

1.1 Motivation

The general idea behind an IDS is that if someone voluntarily attempts to
tamper with a system, she will alter some activities/parameters of the system itself.
The outcomes of her activities are supposed to deviate from the normal behaviour
of the system. Ideally, an IDS is devised to detect and report such anomalies.
An IDS can be classified according to several features, e.g., the kind of data its
engine analyses (host/network data) and the way it detects anomalies (signature
or anomaly-based).

A signature-based IDS works similar to anti-virus software. It employs a sig-
nature database of well-known attacks, and a successful match with current input
raises an alert. Signatures generally target widely used applications or systems
for which security vulnerabilities are widely advertised. Similarly to anti-virus
software, which fails to identify unknown viruses (either because the database is
out of date or because no signature is available yet), a signature-based IDS fails to
detect unknown attacks.

To overcome this limitation, researchers have been developing anomaly-based
IDSs. An anomaly-based IDS works by building a model of normal data/usage
patterns, then it compares (using a similarity metric) the current input with the
model. A significant difference is marked as an anomaly. The main feature of
an anomaly-based IDS is its the ability to detect previously unknown (or modi-
fications of well-known) attacks as soon as they take place. An anomaly-based
IDS can also adapt to custom-developed systems/applications, which are widely
deployed, and for which it is not cost effective to maintain a set of signatures.

As cyber-attacks diversify, signature-based IDSs are likely to miss an increas-
ingly large part of attack attempts. Thus, one would expect a large number of
anomaly-based IDSs to have been deployed to detect the newest disruptive at-
tacks. However, most IDSs in use today are signature-based, and few anomaly-
based IDSs have been deployed in production environments. The reason for this
is that – also according to Kruegel and Toth [70] – a signature-based IDS is easier
to implement and simpler to configure and maintain than an anomaly-based IDS,
i.e., it is easier and less expensive to use.

3

Chapter 1. Introduction

Usability is a broad concept, and the first idea that comes to mind is usually
a user-friendly graphical interface. Although usability has a lot to do with inter-
face design – to quote Nielsen [93] – it is not a single, one dimensional property.
The key notion for us is that software shows a higher degree of usability than its
competitors if it accomplishes a certain task 1) better and/or 2) faster. We will
now show how a signature-based IDS can be easier to run than an anomaly-based
IDS by considering their basic tasks: data analysis, alert verification and attack
response (Kahn et al. [64]).

1.1.1 Running a signature-based IDS

At deployment time, a signature-based IDS requires little work to set up. It
can be deployed almost with an out-of-the-box configuration. Users can perform
a thorough selection of needed signatures, a task known as tuning, to avoid future
false alerts: e.g., a signature for the IIS web server is useless when only Apache-
based installations are in use. Should an alert turn out to be false or unrelated with
the monitored environment, the IT security team can deactivate the signature to
avoid further time-wasting analysis. Tuning is performed once, and then updated
from time to time. Thanks to tuning, a signature-based IDS generally generates a
low rate of false alerts. Users can write custom signatures as well, to detect certain
events and patterns, or refine existing rules to improve detection, thereby altering
the behaviour of the detection engine. Users can manipulate the IDS engine as
they wish.

A signature-based IDS raises classified alerts (e.g., buffer overflow or SQL
Injection), and this classification is assigned “off-line” during the development
of the signature. The importance of classification is threefold. First, security
teams can prioritize alerts without having to inspect them. Second, security teams
deploy automatic defensive countermeasures to react to certain disruptive attacks
as soon as they take place (e.g., dropping network traffic when a buffer overflow
is detected, or changing some rules in firewall systems). Third, alerts can be
correlated with each other, and with other system logs, e.g., firewall logs, (1)
to detect multi-step attacks [97], i.e., attacks that require the attacker to execute
several actions to achieve her goal, and (2) to reduce false alerts by identifying
root causes [63]. Thus, determining the attack class helps these tasks.

1.1.2 Running an anomaly-based IDS

The deployment of an anomaly-based IDS typically requires expert personnel.
Several parameters need to be configured, such as the duration of the training
phase or the similarity metric. Every environment being different, guidelines are

4

1.1. Motivation

hard to give. Each anomaly-based IDS is also different from the others (while
all signature-based IDSs work in a similar manner). Users gain little knowledge
from subsequent installations; hence deployment tasks are likely to be trial-and-
error processes. Users mainly criticize three aspects of the management of current
anomaly-based IDSs [106], each of which increases the user effort needed to run
the IDS. Namely:

1. An anomaly-based IDS generally raises a high number of false alerts.

2. An anomaly-based IDS usually works as a black-box.

3. An anomaly-based IDS raises alerts without an exact classification.

False alerts Because of its statistical nature, an anomaly-based IDS is bound
to raise an higher number of false alerts than a signature-based IDS. As a mat-
ter of fact, the classification of a certain input for a signature-based IDS is pre-
determined (for malicious inputs), while the classification of inputs for an anomaly-
based IDS depends on the training data. Thus, different anomaly-based model
instances could classify the same input differently.

False alerting is a well-known problem of IDSs in general [101], and anomaly-
based IDSs in particular. Security teams need to verify each raised alert, thus an
ineffective system (i.e., a system prone to raise a high number of false alerts) will
require more personnel for its management. Two distinct statistical phenomena
affect the rate of false alerts.

First, most anomaly-based detection engines employ statistical models, a dis-
tance function, and a threshold value to detect anomalies. There is an intrinsic
direct link between attacks detected and false alerts raised [114]. When adjusting
the threshold value to detect a larger number of attacks, the number of false alerts
increases as well. It is impossible to achieve 100% attack detection and 0% false
alert rates at the same time, and users have to balance these opposite phenomena
by setting an appropriate threshold value.

Secondly, Axelsson [17] demonstrates that since intrusions are rare events, and
because a detection engine cannot achieve both a 100% detection rate and a 0%
false alert rate, a greater rate of false alerts will be generated than the expected rate.
This problem is commonly known as the base-rate fallacy, and it stems directly
from Bayes’ theorem. We provide a more detailed explanation of the base-rate
fallacy problem in Section 4.1.1.

Black-box approach An anomaly-based IDS carries out detection as a black-
box. Users have little control: quite often, they can adjust only the similarity met-

5

Chapter 1. Introduction

ric used to discern licit traffic from malicious activities. Because most anomaly-
based IDSs employ complex mathematical models (think of neural networks),
users can neither precisely understand how the IDS engine discerns normal input
nor refine the IDS model to avoid certain false alerts or to improve attack detec-
tion. Users need to spend a good deal of time to understand the inner working of
the system, and they must be experts.

Lack of attack classification An anomaly-based IDS raises an alert every time
its model differs from the current input. The cause of the anomaly itself is un-
known to the IDS. It holds little information to determine the attack class (other
than the targeted IP address/TCP port and the IP source of attack). Because the
model employed by the detection engine is locally built during a certain time
frame, each model is likely to be different. Hence, it is difficult to develop an off-
line classifier suitable for any anomaly-based IDS instance. Because an anomaly-
based IDS is supposed to detect unknown attacks, or slight modifications of well-
known attacks, manual classification or the application of some heuristics are cur-
rently the only possible choices. However, manual classification is not feasible
and the heuristics deliver results in a restricted context only (because the “traits”
of each attack must be known before). Because alerts come unclassified, no auto-
matic countermeasure can be activated to react to a certain threat.

Because of all the difficulties listed above for an anomaly-based IDS, a signature-
based IDS is the obvious choice when users have to monitor complex systems,
such as modern corporate networks, despite its inability to deal with zero day at-
tacks. Users can accomplish tuning more easily to avoid false alerts (thereby sav-
ing overall time), they can write their own set of signatures to detect attacks and
a signature-based IDS automatically performs alert classification. An anomaly-
based IDS lacks these features because researchers have mainly focused on en-
hancing attack detection (Werlinger et al. [122]), and they have not considered us-
ability. As a matter of fact, users could improve the usability of current anomaly-
based IDSs by setting the similarity metric in such a way that the IDS generates
fewer alerts (i.e., recall the base-rate fallacy). However, the detection rate would
be (negatively) affected as well, thereby reducing the only advantage an anomaly-
based IDS has over a signature-based IDS.

1.2 Research Question

Based on the analysis above of the problems of an anomaly-based IDS, this
work focuses on answering the following practical question:

6

1.2. Research Question

“How can we extend current anomaly- network-based IDSs to improve their
usability, yet delivering an effective IDS?”

We focus on network-based IDSs because they are widely deployed and they
can monitor several different platforms at the same time (see Section 2.1 for a
detailed overview). Although anomaly- host-based IDSs present similar issues,
they depend more on the internals of an operating system (think of how Linux
and Windows handle system calls differently). Thus, a certain enhancement could
only be applicable to few host-based IDSs.

Having described three main short comings in anomaly-based intrusion detec-
tion in Section 1.1, we have identified the following sub-questions to address:

1. Can we improve the false alert rate of an anomaly-based IDS in an automatic
way?

2. Can we allow users to control and adjust the behaviour of an anomaly-based
IDS?

3. Can we automate the classification of attacks detected by an anomaly-based
IDS?

To address these questions we have developed SilentDefense, a comprehen-
sive anomaly-based intrusion detection architecture that outperforms competitors
not only in terms of attack detection and false alert rates, but it reduces the user
effort as well. Several integrated components constitute the architecture of Silent-
Defense: each component can work independently, but they can be plugged into
several configurations to offer diverse (automated) facilities to users, thus reduc-
ing user effort. Here we provide a brief functional description of each compo-
nent and the usability issue it addresses (see Section 1.3 for the main technical
contributions). Figure 1.1 shows a possible configuration with all SilentDefense
components present.

POSEIDON is the core component of SilentDefense, as it is employed also
by ATLANTIDES and Sphinx. It has been originally designed to detect anomalies
in computer networks and outperform leading competitors in terms of detection
and false alert rates, thereby reducing the workload for users.

ATLANTIDES is the first system to date that can reduce the number of false
alerts of any IDS (both signature- and anomaly-based) in an automatic way, thereby
reducing the time spent to verify alerts. Although extensively researched, the
problem of reducing the false alert rate (also called alert verification) still persists
for anomaly-based IDSs. Previous systems are tailored towards signature-based
IDSs only, as they require information about triggered signatures to work.

7

Chapter 1. Introduction

Sphinx is a web-based IDS that, though being anomaly-based, allows users
to have tight control over the detection engine behaviour and the way it detects
anomalies, in an intuitive way. Hence, users can (1) reduce the time for verifica-
tion by enhancing the false alert rate (eliminating some normal traces that have
been considered malicious) and (2) improve effectiveness by adding custom de-
tection rules. The topic of helping users to change the way an anomaly-based
IDS detection engine works has been briefly addressed by Robertson et al. [106].
The main problem is how to present to users the detection models in an easy and
simple way for them to understand how to refine the model(s). Sphinx allows the
users to have a tight control over the detection engine by presenting the detection
models in the form of regular expressions.

Panacea is the first system to date that automates the classification of attacks
detected by an anomaly-based IDS, thereby reducing the time users have to spend
to classify raised alerts. A simple approach to solve this problem is to generate
some heuristics to match an attack to some previous knowledge. Although effec-
tive, this approach is not scalable because it requires a good deal of manual labour,
also to update the heuristics w.r.t. new attacks, and it strictly relies on the expertise
of the analyst(s). Panacea provides an automatic way to build attack classifiers,
but it also allows the user to define her own attack classification.

Figure 1.1: A possible configuration of SilentDefense components. See Section 1.3 for a
technical description of each component.

8

1.3. Thesis Overview

1.3 Thesis Overview

We begin by describing the state of the art and a taxonomy of intrusion de-
tection systems in Chapter 2. In Chapter 3 we present POSEIDON, our anomaly-
based network intrusion detection system, and compare it to previous similar sys-
tems. POSEIDON is the core of several other systems we have developed. In
Chapter 4 we introduce ATLANTIDES, a system to reduce false positives raised
by any network intrusion detection system. In Chapter 5 we describe an intrusion
detection system specifically tailored to detect attacks to web applications. We
call this system Sphinx. In Chapter 6 we present a system (Panacea) to automati-
cally classify alerts raised by an anomaly-based IDS.

We now elaborate further the contribution of each chapter in more detail and
present some technical internals of SilentDefense. Figure 1.2 depicts the cross-
component relationships of SilentDefense components.

Taxonomy of Intrusion Detection Systems (Chapter 2) We provide a taxon-
omy of intrusion detection systems and some definitions that we use through this
work. We then report on the state of the art of network anomaly-based intrusion
detection, which is the main topic of this work. We compare different anomaly-
based detection engines, based on the data they analyse (e.g., network packet
headers or connection meta-data) and the algorithm they use to detect anoma-
lies (e.g., neural networks). We show how the different approaches can be more
effective than others in detecting a certain attack. We conclude by showing how
an anomaly-based IDS builds its detection model and how the similarity metric is
used to detect anomalies. This work appears in a book chapter [7], which is joint
work with S. Etalle.

POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection System
(Chapter 3) We present the architecture of POSEIDON, an anomaly- network-
based IDS. POSEIDON combines a Self-organizing Map (a neural network) and
a modified version of the Wang and Stolfo’s PAYL algorithm [121] (based on n-
gram analysis). This combination proves to enhance detection and false alert rates,
and to be more effective than the original algorithm, which was, at that time, the
leading anomaly-based IDS. We motivate the design choices for this architecture
and detail its advantages over other solutions. This work appears in a refereed
conference paper [4], which is joint work with E. Zambon, S. Etalle and P.H.
Hartel.

ATLANTIDES: an Architecture for Alert Verification in Network Intrusion
Detection Systems (Chapter 4) ATLANTIDES is a system designed to lower

9

Chapter 1. Introduction

the false alert rate of network intrusion detection systems, and it works in com-
bination with both signature- and anomaly-based IDSs. ATLANTIDES processes
the alerts raised by an IDS monitoring incoming data and analyses the outgoing
data generated by the network service in response to the suspicious input. The
analysis of the output is performed by an instance of POSEIDON, modified to
monitor outgoing traffic rather than incoming. Should the output turn out to be
anomalous, ATLANTIDES forwards the alert raised to the security team. The
alert is otherwise dropped. ATLANTIDES works in a completely automatic man-
ner, after a quick set up, and it does not require expert personnel for its operation,
thereby improving the usability. Benchmarks prove that our system is effective
in reducing false alerts without reducing true alerts. In Section 4.2.1 we also
provide a quick method to automatically set the threshold value for POSEIDON.
This work appears in a refereed conference paper [1], which is joint work with B.
Crispo and S. Etalle.

Boosting Web Intrusion Detection Systems by Inferring Regular Languages
(Chapter 5) Sphinx is an anomaly-based IDS tailored to monitor web appli-
cation and web services in general. With Sphinx we introduce the concept of a
“positive signature”. Signatures employed by an IDS usually match attack traces.
On the other hand, a positive signature describes the normal (expected) input of
the web application parameters. Sphinx analyses the parameters and automati-
cally infers a regular expression (i.e., the positive signature) to validate the con-
tent of each of them. Because a positive signature is in the form of a regular
expression, it is easy for users to adjust any positive signature and make it more
accurate, thereby changing the behaviour of the detection engine. For some input
parameters, it is not possible to generate precise positive signatures (think of email
messages or binary data). The content of those parameters is then processed by
a modified instance of POSEIDON. Comparative benchmarks against other web-
anomaly-based IDSs prove that our system is more effective in detecting attacks,
with a lower false alert rate. This work appears in a refereed conference paper [2],
which is joint work with S. Etalle.

Panacea: Automating the Classification of Attacks for Anomaly-based Net-
work Intrusion Detection Systems(Chapter 6) We present a system to auto-
mate the classification of alerts raised by an anomaly-based IDS, Panacea. It
works by analysing the payload of raised alerts from which it extracts some meta-
information. The meta-information is then passed to a supervised machine learn-
ing algorithm that builds classification profiles to match attack classes. The ma-
chine learning algorithm requires to be trained, i.e., to observe a number of sam-
ples whose classification is known. The training can be fully automated or sup-

10

1.4. Conclusion and Outlook

ported by an analyst. In the former case, Panacea receives alerts incoming from a
signature-based IDS and extracts all required information. In the latter case, alert
sources can be diverse, and the analyst provides the corresponding attack clas-
sification for a certain alert. Once the training is complete, the system switches
to classification mode and processes incoming anomaly-based alerts to output an
attack class. Panacea is heuristic-independent and supports user-defined attack
classifications as well. This work appears in a refereed conference paper [3],
which is joint work with S. Etalle and P.H. Hartel.

Figure 1.2: Cross-component relationships of SilentDefense components.

1.4 Conclusion and Outlook

After a decade of theoretical and practical research, anomaly detection tech-
niques can be considered mature. Yet, anomaly-based IDSs failed to evolve from
the research laboratories to real network environments. Although effective, they
do not meet usability requirements and users find signature-based IDS more prac-
tical to use.

In this thesis we answer the main research question positively, by approach-
ing the research problem from a different point of view than previous research.
Our contributions do not only relate to well-known problems (i.e., reducing false
alerts), but address important issues that have not been extensively explored be-
fore; in particular, we address sub-questions related to main usability issues by
developing several tools to extend current anomaly-based IDSs.

11

Chapter 1. Introduction

Some of our tools (POSEIDON and Sphinx) address usability indirectly, by
raising fewer false alerts than competitors, thus reducing the time users need to
spend to manage the IDS. Other tools (ATLANTIDES and Panacea) have been
specifically designed to automate various tasks of an anomaly-based IDS, that are
usually run manually. The ultimate goal of our work is to close the gap with
signature-based IDSs and eventually to allow users to combine these two differ-
ent approaches to protect computer networks. Panacea and Sphinx are the most
concrete effort to bridge anomaly- and signature-based IDSs.

Despite the number of issues we address, our extensions are of course not
complete; there is considerable room for further improvement. We do not address
the problem of training an anomaly-based IDS engine. The quality of data used to
build the detection model is a crucial factor, which can influence both effective-
ness and usability. A model with a poor quality is likely to flag a higher number
of legal events as malicious than a good quality model, thus increasing the amount
of time required to process alerts.

The topic of correlation of host- and network-based IDSs alerts has been al-
ready addressed in the past. However, research should address also how the si-
multaneous combination of the two approaches can improve the overall detection
effectiveness and accuracy. Host-based IDSs usually impact on performance, thus
they would need to run only when a possible threat is detected. A network-based
IDS could activate the host-based IDS “on-demand”.

Public data sets for IDS testing date back to 1999. Those data sets do not
reflect neither the data transferred nowadays on the Internet nor the latest attack
techniques. Researchers are forced to collect their own private data set to assess
the effectiveness of their systems, but, because of privacy issues, such data sets
are not usually disclosed publicly. As a result, it is difficult to asses the effective-
ness of an IDS and to compare different systems under the same conditions. The
development of a public, modern and faithful data set for IDS testing should be a
primary goal for the IDS research community.

12

Chapter 2
Taxonomy of Intrusion Detection
Systems∗

In the multifaceted world of intrusion detection, systems have only a few un-
derlying principles. In this chapter, first we introduce the definitions and a taxon-
omy for IDSs, specifically in terms of the data source (i.e., which data is analysed)
and the detection model (i.e., the underlying algorithm) employed. Then we fo-
cus on anomaly-based network intrusion detection, which is the main topic of this
work, and provide a detailed overview.

Let us first set the stage: we assume the presence of an application A (or
system) that exchanges information over a network. An input is any finite string
of characters and we say that S is the set of all possible inputs. Typically, A is
not designed to deal with any input i ∈ S but only with a subset of S, which we
call IN (the normal inputs, e.g., in the case of a web service IN will consist of all
valid user requests made to the web application). Similarly, we call ID ⊂ S the
set containing all possible dangerous inputs (attacks, e.g. allowing an attacker to
deviate the normal behaviour). We assume that ID

⋂
IN = 0 over the time (i.e.,

an input that was considered normal during, e.g., the working hours will not be
considered dangerous during the weekend).

Definition 1 An intrusion detection system monitors computer systems and net-
works to determine if a malicious event (i.e., an intrusion) has occurred. Each
time a malicious event is detected, the IDS raises an alert.

∗This chapter is a major revision of the book chapter Approaches in Anomaly-based Network
Intrusion Detection Systems, Intrusion Detection Systems, volume 38 of Advances in Information
Security, pages 1 - 15, Springer, 2008.

13

Chapter 2. Taxonomy of Intrusion Detection Systems

Definition 2 A true positive (TP) is a real alert, raised in response to an intrusion
attempt.

Definition 3 A false positive (FP) is a false alert, raised in response to a non-
malicious behaviour.

Definition 4 A true negative (TN) is the event when no alert is raised and no
intrusion attempt takes place.

Definition 5 A false negative (FN) is the event when no alert is raised but a real
intrusion attempt takes place.

False positives, rather than false negatives, influence the overall user experi-
ence of an IDS (see Chapter 4 for a detailed discussion). Users are aware that
some attack attempts will go unnoticed, but on the other hand a system that often
raises false alerts is likely to be ignored after a while.

Definition 6 The effectiveness of an IDS is determined by its completeness and
its accuracy [42, 43].

• completeness = #TP/(#TP + #FN)

• accuracy = #TP/(#TP + #FP)

Here, #TP is the number of true positives, #FN is the number of false nega-
tives and #FP is the number of false positives raised during a given time frame.
In other words, the completeness is the detection rate and the accuracy the false
positive rate. In this work we will refer to the latter definitions rather than com-
pleteness and accuracy.

Definition 7 A zero-day attack exploits a software vulnerability that has not been
made public yet.

Being unknown to security experts, zero-day attacks are unlikely to be detected
by a present IDS (predominantly signature-based, see Section 2.3). On the other
hand, cyber criminals can easily get access to zero-day attacks in the well-developed
underground market. Often, even straightforward mutations of known attacks can-
not be recognized either by a present IDS.

Definition 8 A targeted attack is crafted to attack specific (often custom) sys-
tems/applications within a network.

14

2.1. Host- or Network-based Systems

2.1 Host- or Network-based Systems

The first distinction we can draw to characterize an IDS is the main source
of data used to feed its detection model. An IDS can be either host- or network-
based. In this section, for both approaches, we present the definition, typical
advantages and disadvantages of the approach and some examples of real systems.
We focus mainly on network-based systems because they are the most popular
nowadays.

2.1.1 Host-based Systems

Definition 9 A host-based IDS (HIDS) monitors a single machine (or a single ap-
plication) and audits data traced by the hosting operating system (or application).

Typical examples of audited data are system calls (their parameters and their or-
der), resource usage, and/or system logs.

HIDSs have been deployed first to attempt the detection of malicious or unau-
thorized events against computer systems: the first implementations were mainly
designed to analyse system logs [14]. Nowadays, the host-based approach is less
attractive than a decade ago. First, modern operating systems have grown in com-
plexity, “driven” by the explosive growth of the Internet, thus it is more difficult
to achieve an extensive monitoring. Secondly, system administrators are usually
concerned about the impact of an HIDS on host performance. A notable HIDS (it
is usually called a “web application firewall”) is ModSecurity [128]. It is a module
(i.e., a pluggable software component) for the Apache web server. ModSecurity
intercepts incoming requests, runs the analysis and, in case a request is considered
suspicious, can drop it, thereby preventing the request from being processed by
the Apache instance.

2.1.2 Network-based Systems

Definition 10 A network-based IDS (NIDS) monitors a network segment and anal-
yse the traffic which flows through the segment.

The NIDS detection engine can analyse different data: network streams (i.e., con-
nection properties such as endpoints, bytes exchanged by peers, connection time)
or network payloads.

A network-based intrusion detection system (NIDS) is considered an effective
second line of defence against network-based attacks directed at computer sys-
tems and networks [18, 43], and – due to the increasing severity and likelihood of

15

Chapter 2. Taxonomy of Intrusion Detection Systems

such attacks from the Internet – NIDSs are employed in almost all large-scale IT
infrastructures [11]. A typical example of NIDS is Snort [107, 143].

The main advantage of the NIDS approach is the possibility to monitor data
and events without affecting host performance. On the other hand, the fact it is not
host-based turns out to be one of the main disadvantages (especially for systems
analysing the payload of network packets). For instance, a NIDS cannot function
properly in combination with applications or application protocols which apply
data encryption (e.g. SSH and SSL), unless the encryption key is provided. A
possible solution to this makes use of a host-based component to access data after
decryption, but this causes an overhead on the monitored host. This problem is
going to grow in importance when IPv6 will gradually replace IPv4: in fact, one
of the main design goals of IPv6 is the authentication and confidentiality of data
(through cryptography).

Another common problem for a NIDS is the reconstruction of network traffic.
Data streams are split into TCP segments and IP datagrams. In order to analyse
the content, the system needs to reassemble the traffic into the original form. Mod-
ern networks operate at high speed (up to 10Gbs): while the traffic reconstruction
would be theoretically possible for an arbitrarily powerful system, a NIDS faces
performance and implementation constraints. First, the NIDS must save a signif-
icant amount of data for a “long” time, depending on system time-outs and data
throughput (this is resource consuming). Secondly, operating systems implement
heterogeneous network stacks and handle data reconstruction differently. There-
fore the NIDS engine should implement some context-awareness functionalities.
All of these limitations resulted in the so-called evasion and insertion attacks, for-
malised by Ptacek and Newsham [104]. Attackers craft communications to fool
the NIDS, e.g., by overwriting inside NIDS memory some data previously sent or
by forcing the NIDS to drop data (that has not been analysed yet) after sometime.

The EMERALD system [90] attempted to merge the advantages offered by
both the HIDS and the NIDS approaches into a (virtually) single IDS. The prob-
lems of data normalization from different sources, event fusion and correlation
and suitable metric definition are still open issues. These problems stopped the
development of improvements after the first proof of concept of EMERALD.

2.1.3 Honeypots

A honeypot is a closely monitored computer system that is deliberately de-
ployed to be attacked and compromised. Honeypots are not used by normal users,
therefore they are hit only by malicious activities. Although such systems cannot
be categorized as IDSs (since they passively wait for attackers to hit), honeypots

16

2.2. Signature- or Anomaly-based Systems

gather information that is not usually available to IDSs, e.g., by recording and
tracking any activity performed by the attacker.

Honeypots can emulate either a fully working computer system (high-interaction)
or only part(s) of it, such as the network stack (low-interaction). High-interaction
honeypots (e.g., Sebek [146] and Argos [102]) are useful to capture and study
exploits for vulnerabilities that are still unknown, as the attacker can gain full sys-
tem control. Low-interaction honeypots (e.g., honeyd [103]) are more limited, but
they are useful to learn about network probes or worm activity.

Honeypots are usually deployed in research networks to capture, e.g., malware
instances and consequently update and upgrade anti-virus software and IDSs to
cope with new threats.

2.2 Signature- or Anomaly-based Systems

The second classification one can use to categorize an IDS is based on the
model it uses to detect attacks. As this feature is often considered the most impor-
tant, we provide a detailed overview of both approaches, signature- and anomaly-
based. In this section we provide a definition for each approach and show its main
strengths and weaknesses.

2.2.1 Signature-based Systems

A signature-based IDS (SBS), e.g., Snort [107, 143], is based on pattern-
matching techniques: the IDS contains a database of known-attack signatures
(much like an anti-virus software) and tries to match these signatures with the
analysed data. When a match is found, an alert is raised. Formally:

Definition 11 A signature-based IDS is based on a model MS ⊆ ID of dangerous
inputs: if an input element i ∈MS then the IDS raises an alert.

This approach usually yields good results in terms of few false positives, but
has drawbacks: first, in most systems all new (i.e., zero-day) or polymorphic at-
tacks, where a change in the attack payload does not affect the attack effectiveness,
will go unnoticed until the signature database is updated. The IDS is not likely to
detect even slight modifications of a known attack. Thus, attackers have a window
of opportunity to gain control of the system or application under attack. Although
this limitation is considered acceptable for detecting attacks to, e.g., the OS, it
makes an SBS less suitable for protecting a web-based service, because of the ad
hoc and dynamic nature of web traffic. Secondly, an SBS needs to be updated
regularly, increasing the IT personnel workload and required skills.

17

Chapter 2. Taxonomy of Intrusion Detection Systems

2.2.1.1 Developing Signatures

Developing a signature is a thorny task [100]. Once an attack is made public,
experts first need to carefully analyse it. The attack could exploit either a well-
known vulnerability or a new one. The signature should aim to detect the way the
attack exploits a given vulnerability rather than the attack payload only: e.g., a
buffer overflow can be exploited by different attack vectors, but those vectors will
show a common (minimum) length. The reason for this is that, since it is easy for
an attacker to modify the attack payload while not altering the attack effectiveness,
there are more chances to detect attack variations with just one (or few) signature.
Abstracting the attack is not always possible, and it usually requires a good deal of
work: it is difficult to find the right balance between an overly specific signature
(which is not able to detect a simple attack variation) and an overly general one
(which will classify legitimate traffic as an attack attempt).

Figure 2.1: A signature-based IDS.

2.2.2 Anomaly-based Systems

An anomaly-based IDS (ABS) builds a statistical model which describes the
normal behaviour of the monitored system/network. Intuitively, an ABS works by
training itself to recognize acceptable behaviour and then raising an alert for any
behaviour outside the boundaries of its training. Formally:

Definition 12 An anomaly-based IDS makes use of a model MA ⊆ IN of normal
inputs: if i /∈MA then the IDS raises an alert.

Typically,MA is defined implicitly by using an abstract modelMabs and a sim-
ilarity function φ(Mabs, i)→ {yes, no}, to discern normal inputs from anomalous
ones. An example of a similarity function is the distance d such that φ(Mabs, i) =

18

2.3. State-of-the-art of Anomaly-based Intrusion Detection Systems

d(Mabs, i) < t, where t is a threshold value . The model Mabs is built during
a training phase: starting from a training set T ⊆ IN (a consistent dump of the
application/system input) one builds Mabs (and – implicitly – MA) in such a way
that every input in T is included in MA. For the model to reflect faithfully the
“normal” activity, it is important that MA does not contain malicious inputs (see
Section 2.3.3 for a detailed discussion).

The main advantage of an ABS is that it can detect zero-day and polymorphic
attacks: novel attacks can be detected as soon as they take place. Since they do
not require any a-priori knowledge of the application/system, an ABS can protect
better than an SBS ad hoc systems such as custom-developed applications (e.g.,
web applications, as also argued by Vigna [106]). Thus, an ABS is suitable to
detect targeted attacks too. On the negative side, because of the statistical nature
of its model, an ABS is bound to raise a number of false positives, and the value
of the threshold actually determines a compromise between the number of false
positives and the number of false negatives the IT security personnel is willing to
accept [114]. An ABS is generally difficult to configure and use: as the detection
model is usually a black-box, users have little control over the way the system
detects attacks and on the false positive/negative rates.

Figure 2.2: An anomaly-based IDS.

2.3 State-of-the-art of Anomaly-based Intrusion De-
tection Systems

Most IDSs in use today are network- and signature-based. System adminis-
trators prefer a signature-based NIDS (SNIDS) over an anomaly-based systems
(ANIDS) because it is – according to Kruegel and Toth [70] – easier to implement
and simpler to configure and maintain, despite the fact that a SNIDS could raise

19

Chapter 2. Taxonomy of Intrusion Detection Systems

a significant amount of false negatives. However, as new attacks are devised with
increasing frequency every day (see the Internet Storm Center’s web site [134] for
weekly and monthly single attack rates), the ANIDS approach becomes increas-
ingly attractive.

2.3.1 Classification of Anomaly-based Network Intrusion De-
tection Systems

An ANIDS can extract information to detect attacks from different sources:
packet headers, packet payload or both. Header information is mainly useful to
recognize attacks aiming at vulnerabilities of the network stack implementation
or probing the operating system to identify active network services. On the other
hand, payload information is most useful to identify attacks against vulnerable
applications (since the connection that carries the attack is established in a normal
way) [121]. Without pretending to be globally better than other types of ABSs,
payload-based systems have importance of their own, as they are particularly suit-
able for detecting popular attacks such as those against the HTTP protocol, and
worms (see Wang and Stolfo [119] and Costa et al. [35] for a discussion). An
ANIDS can be classified according to:

(a) the underlying algorithm it uses;

(b) whether it analyses the features of each packet separately or of the whole
connection, and how data are correlated;

(c) the kind of data it analyses. In particular, whether the ANIDS engine anal-
yses either the packet headers or the packet payload.

Regarding the underlying algorithm, Debar et al. [42, 43] define four different
possible approaches, but only two of them have been successfully employed in
the last decade: algorithms based on statistical models and those based on neural
networks. The former is the most widely used: according to Debar et al. [42]
more than 50% of existing ANIDSs employ statistical models. An ANIDS based
on neural networks works in a similar way, but instead of building a statistical
model, it trains a neural network which is then in charge of recognizing regular
traffic from anomalous one.

Concerning feature (b) the distinction one has to make is between packet-
oriented and connection-oriented systems. A packet-oriented system uses a sin-
gle packet as minimal information source, while a connection-oriented system
considers features of the whole communication before establishing whether it is
anomalous or not. Theoretically, a connection-oriented system could use as input

20

2.3. State-of-the-art of Anomaly-based Intrusion Detection Systems

the content (payload) of a whole communication (allowing – at least in principle
– a more precise analysis), but this would require a longer computational time,
which could limit the throughput of the system by introducing extra latency time.
In practice, a connection-oriented system typically takes into account the number
of sent/received bytes, the duration of the connection and layer-4 protocol used.
According to the Wang and Stolfo benchmarks [121], a payload-based system
does not show a significant increase in performance when it also reconstructs the
connection, instead of just considering the packets in isolation. In practice, most
ANIDSs are packet-oriented (see also Table 2.1).

The last, more practically relevant distinction we can make is between header-
based and payload-based systems. A header-based system considers only packet
headers (layer-3 and, if present, layer 4 headers) to detect malicious activities; a
payload-based system analyses the payload data carried by the layer-4 protocol;
there are also hybrid systems which mix information gathered observing packet
headers and (if present) layer-4 payload data. We will elaborate on this distinction
in the rest of this section. Before we do so, we present a table reporting the most
important systems; which have been benchmarked with public data sets (either
DARPA 1998 [81] or DARPA 1999 [83] data sets, which contain a full dump of
the packets, or the KDD 99 [23] data set, which contains only connection meta
data extracted from the DARPA 1999 data set).

iSOM [92] uses a one-tier architecture, consisting of a Self-organizing Map [67],
to detect two attacks in the 1999 DARPA data set: the first attack against the
SMTP service and the other attack against the FTP service. IntelligentIDS [46]
extracts information from the connection meta data once it has been reassem-
bled. PHAD [84] combines 34 different values extracted from the packet headers.
MADAM ID [79] extracts information from audit traffic and builds classification
models (specifically designed for certain types of intrusion) using data mining
techniques. SSAD [71] (Service Specific Anomaly Detection) combines different
information such as type, length and payload distribution (computing character
frequencies and aggregating then them into six groups) of the request. PAYL [121]
and POSEIDON (see Chapter 3) detect anomalies only looking at the full payload.
Table 2.1 summarizes the properties of the systems mentioned.

2.3.2 Payload- vs Header-based Approaches

We now elaborate on the differences in effectiveness between payload-based
and header-based systems. We begin by showing some examples of attacks that
can be detected by the systems of one kind, but not by all systems.

21

Chapter 2. Taxonomy of Intrusion Detection Systems

System Detection Engine Semantic Level Analysed Data
iSOM NN PO + CO Meta data
IntelligentIDS NN CO Meta data
PHAD S PO H
MADAM ID S CO Meta data
SSAD S PO H + P
PAYL S PO P
POSEIDON NN + S PO P

Table 2.1: The most important ANIDSs: NN stands for Neural Networks, S for Statistical
model, PO is Packet-Oriented while CO is Connection-Oriented, H and P stand for Header
and Payload respectively.

2.3.2.1 Attacks Detectable by Header-based Systems

The attacks presented in this section are extracted from the DARPA 1999 data
set. Although nowadays these attacks are not effective, they were considered
serious threats at the time the data set was put together. iSOM, IntelligentIDS,
PHAD and SSAD are likely to detect these attacks (in particular, the latter two
systems).

The teardrop exploit [130] is a remote Denial of Service attack that exploits
a flaw in the implementation of older TCP/IP stacks: such implementations do
not handle properly IP fragments which overlap. Figure 2.3 shows how the attack
takes place: the attacker sends fragmented packets forged so that they overlap each
other when the receiving host tries to reassemble them. If the host does not check
the boundaries properly, it will try to allocate a memory block with a negative
size, causing a kernel panic and crashing the OS.

An IDS can detect this attack only by looking for two specially fragmented
IP datagrams, analysing the headers. This attack exploits a vulnerability at the
network layer (layer 3 of the ISO/OSI network stack [127]).

The Land attack [130] is a remote Denial of Service attack that is effec-
tive against some older TCP/IP implementations: the attack involves sending a
spoofed TCP SYN packet (connection initiation) with the same source and desti-
nation IP address (the target address) and the same (open) TCP port as source and
destination.

Some implementations cannot handle this theoretically impossible condition,
causing the operating system to go into a loop as it tries to resolve a repeated
connection to itself. An IDS detects this attack by looking at packet headers, since
TCP SYN segments do not carry any payload. This attack exploits a vulnerability
at the transport layer (layer 4 of the ISO/OSI network stack).

22

2.3. State-of-the-art of Anomaly-based Intrusion Detection Systems

(a) Correct case

(b) Incorrect case

Figure 2.3: A correct and incorrect case of fragment management by the network layer.

2.3.2.2 Attacks Detectable by Payload-based Systems

The following attacks we present can be detected only by looking at the pay-
load of the network connection. The attacks work by injecting some malicious
content into the vulnerable application. As the attack is carried at application
level, headers do not show any significant information for the IDS to detect the
attack. SSAD, PAYL and POSEIDON are likely to detect these attacks.

SQL Injection is a technique that exploits vulnerabilities of (web-based) ap-
plications which are interfaced to an SQL database: if the application does not
sanitize potentially harmful characters first [149], an intruder can inject an SQL
query in the database to force it to output sensitive data from database tables (e.g.,
user passwords and personal details), or to execute arbitrary commands with high
user-privileges. SQL Injection attacks are considered a serious threat and are con-
stantly listed in the “Top Ten Most Critical Web Application Security Vulnerabil-
ities” [148] by “The Open Web Application Security Project”.

23

Chapter 2. Taxonomy of Intrusion Detection Systems

For instance, the following HTTP request is actually a well-known attack [142]
against the Content Management System (CMS) PostNuke [138]. The attack uses
a request parameter (start in the following example) whose content is not properly
sanitized.

http://[target]/[postnuke_dir]/modules.php?op=modload&
name=Messages&file=readpmsg&start=0%20UNION%20SELECT%20
pn_uname,null,pn_uname,pn_pass,pn_p

When a SQL Injection attack is carried out successfully, the output is still an HTML
page but within the usual HTML tags it is possible to find information stored in the
database table(s), whose access was originally regulated by the web application. In the
previous example, the attacker can get hold of the user passwords stored in the web appli-
cation user table.

The PHF attack [129] exploits a badly written CGI script, that was shipped with the
Apache web server, to execute commands with the privilege level of the HTTP server
user. This script relies on the vulnerable function escape shell cmd(). The purpose of
the function is to prevent passing shell meta-characters to critical library calls (such as
system, which execute any command in the argument list). The function contains a bug in
the argument handling, and it is possible to execute arbitrary commands within the HTTP
server context by crafting a special HTTP request. In the following example, the attacker
inserts the command to execute in the parameter Qalias.

http://[target]/cgi-bin/phf?Qalias=x\%0A/bin/cat\%20/etc/passwd

A successful attack forces the HTTP server to execute the command and to send
back to the attacker the output generated during the execution (the list of system users in
the previous example). To detect a PHF attack, an IDS can monitor HTTP requests for
invocations of the phf command with arguments that specify commands to be run.

The above examples reflect the unsurprising fact that header-based systems are more
suitable to detect attacks directed at vulnerabilities of the network and transport layers
than the application layer; we can also include in this category all of the probing tech-
niques used before a real attack takes place (port/host scanning). On the other hand,
payload-based systems are more suitable to identify attacks trying to exploit vulnerabili-
ties at the application level, where sensitive data is stored and most of the systems can be
subverted.

Nowadays, this second kind of attack is the most common: this is due both to the
large success of web-based services, and to the fact that network stack implementations
are becoming more resilient against attacks. Because of this, we believe that payload-
based systems will be increasingly useful in the future. We believe that this trend not only
favours payload-based over header-based ANIDSs, but also ABSs w.r.t. SBSs.

24

2.3. State-of-the-art of Anomaly-based Intrusion Detection Systems

On the other hand, a payload-based ABS is likely to miss the detection of attacks such
as Denial of Service or password brute forcing. These attacks work by repeating a licit
action (e.g., connecting to a web server or attempting to authenticate) hundred times in a
short period of time. The anomaly cannot be found by analysing the content, but rather by
analysing the number of connections (or actions) a host performs. Connection-oriented
systems like iSom, IntelligentIDS and MADAM ID employ models which could detect
such attacks.

We can draw the conclusion that current ABSs are not able to detect all of the possible
attack classes, but focus on subsets.

2.3.3 Building the Model

Good training is of crucial importance for the effectiveness of the system. The model
MA used by an ABS should reflect the behaviour of the system in absence of attacks,
otherwise the ABS may fail to recognize an attack as such. Because of this, the ABS
should be trained with a clean (i.e., attack-free) data set. However, obtaining such a data
set is difficult in practice: a casual dump of network traffic is likely to be noisy (i.e., to
contain attack attempts), and the longer the traffic is dumped, the higher is the chance to
include noise.

The standard way to deal with this is by sanitizing the data set manually. This relies
completely on the expertise of the IT personnel which must analyse a large amount of
data. The process is labour intensive, also because the detection model needs to be up-
dated regularly to adapt to environment changes. Manual inspection can be aided by an
automatic inspection using an SBS, which can pre-process the training data and discover
well-known attacks (e.g. web-scanners, old exploits, etc.) An SBS however will not detect
all attacks in the data, leaving the training set with a certain amount of noise.

The duration of the training is influenced by opposing constraints. On one hand the
training phase should be long enough to allow the system to build a faithful model: a too
short training phase could lead to a coarse data classification, which – in the detection
phase – translates into flagging legitimate traffic too often as anomalous (false positives).
Nevertheless, during a longer training phase, a good deal of noise is likely to be incor-
porated in the model. On the other hand, applications change on a regular base (this is
particularly true in the context of web applications, which are highly dynamic), and each
time a software change determines a noticeable change in the input of the application, one
needs to re-train the model. The larger the training set required, the higher is the required
workload to maintain the IDS.

Desiderata To summarize, the quality of the modelMA is crucial to achieve a low rate
of both false positives and false negatives. For MA we can define the following set of
desiderata:

• To avoid false positives, MA should contain all foreseeable non-malicious inputs.

25

Chapter 2. Taxonomy of Intrusion Detection Systems

• To avoid false negatives, MA should be disjoint from the set of possible attacks,

• MA should be simple to build, i.e., the shorter the training phase required to build
a faithful MA, the better it is.

2.3.4 Similarity Metric

As we have seen, to determine whether a certain input is anomalous or not, an ABS
compares the input to its model, by using a similarity function. As most of the ABSs
nowadays are based on statistical models, the similarity function is usually a distance
function, whose output is compared to a threshold value. The choice of this function
depends on the model the ABS employs, and how many features it takes into the account.
For instance, for a single feature (e.g., the length of a parameter content inside a HTTP
request) the distance can be defined by using the Chebyshev inequality (see [73]). The
Mahalanobis distance considers multiple correlated mean and standard deviation values
at once (see [121]).

The value of the threshold has an important impact on the completeness and accuracy:
a low threshold yields a high number of alarms, and therefore a low false negative rate,
but a high false positive rate. On the other hand, a high threshold yields a low number of
alarms in general (therefore a high number of false negatives, but a low number of false
positives). Therefore, setting the threshold requires skill: its “optimal” value depends on
the environment being monitored and on the quality of the training data.

To represent graphically how the threshold influences completeness and accuracy, we
can use a parametric curve, the Receiver Operating Characteristic (ROC), typical of the
signal analysis field. The ROC curve plots the completeness value (also called detection
rate) versus the FP value, as the threshold value is varied. Figure 2.4 shows an example
of an ROC curve.

2.4 Conclusion
This chapter introduces some definitions and a taxonomy for intrusion detection sys-

tems. We have shown how an IDS can be classified on the basis of the data source it
analyses and the detection model it employs. We present a detailed overview of anomaly-
based intrusion detection, which is the main topic of this work (in particular, anomaly-
network-based detection). Table 2.2 summarizes the main advantages and disadvantages
of signature-based IDSs w.r.t. anomaly-based IDSs.

ABSs have been extensively researched but there are still major open issues that limit
the application of an ABS in real environments, despite its advantage over an SBS in
detecting new attacks. In this work, we address the problems of reducing false positives,
making an ABS more user-friendly by allowing a user to interact with the detection engine
and raising classified alerts generated by an ABS. In the following chapters, we will first

26

2.4. Conclusion

Figure 2.4: Example of ROC curve. Here, left is better than right and above is better than
below. A point left-top indicates an IDS that correctly detects (almost) every attack, with
very few false positives left. On the other hand, a point on the low-right side indicates an
IDS that fails to detect some real attacks, and flags a good deal of licit traffic as anomalous.

discuss the core component (Chapter 3) of the SilentDefense architecture, before getting
back into the usability issues and introducing each component individually.

Detection model Advantages Disadvantages

Signature-based
Low false positive rate Cannot detect new attacks

Does not require training Requires continuous updates
Classified alerts Tuning could be a thorny task

Anomaly-based

Prone to raise false positives
Can detect new attacks Black-box approach

Self-learning Unclassified alerts
Requires initial training

Table 2.2: Advantages and disadvantages of SBSs versus ABSs.

27

Chapter 3
POSEIDON: a 2-tier Anomaly-based
Network Intrusion Detection System∗.

In this chapter we present POSEIDON (Payl Over Som for Intrusion DetectiON): a
two-tier ANIDS. The first tier consists of a Self-organizing Map (SOM), and it is used
exclusively to classify payload data; the second tier consists of a slight modification of
the well-known PAYL algorithm [121] for the detection of anomalies.

POSEIDON is payload-based: it uses only the destination address and service port
number to build a profile for each endpoint monitored, and it does not consider other
header features. Mahoney and Chan [85] call the payload the legitimate data of the 1999
DARPA data set, implying that we can legitimately expect that our system performs in real
environments similarly to what it does on the DARPA benchmarks (see Section 3.2.1).

Let us now explain the reasons that brought us to develop this architecture. We be-
lieve that the Achilles’ heel of the PAYL algorithm lies in the classification it adopts: the
algorithm uses packet payload length information to classify packets and thus to define
detection models. This, together with the fact that - for efficiency reasons - models have
to be merged, yields in our opinion a too low intra-model similarity: two packet payloads
can be dissimilar in content but similar (or equal) in length. Because they are classified ac-
cording to the latter parameter they will be classified in the same cluster, but their different
byte distributions will negatively affect the way the detection engine detects anomalies.
We think that a better way to tackle the data classification is to consider the packet payload
data in the classification phase too.

There are several classification algorithms. We think that a SOM - in general - yields
a high quality classification, i.e. models with a high intra-model similarity and high inter-
model dissimilarity. First, a SOM can deal better with high-dimensional data, than al-

∗This chapter is a minor revision of the paper with the same title published in the Proceedings
of the 4th IEEE International Workshop on Information Assurance (IWIA ’06), pages 144 - 156,
IEEE Computer Society, 2006. The paper includes the pseudo code of POSEIDON, which is not
reported in this work.

29

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

gorithms such as K-means and K-medoids [125]. Secondly, a SOM works in an un-
supervised manner. Although SOMs have been used before for intrusion detection, we
believe that a SOM is not as effective when it comes to the detection phase, i.e. finding
whether a given packet is anomalous w.r.t. the profile it has been classified in. In a SOM,
detection means comparing the current packet quantization error with matching profile
quantization error: this method can be heavily influenced by payload byte order and thus
perform poorly.

For the detection, we believe that the n-gram algorithm used by PAYL is more suit-
able. By combining a SOM with the n-gram algorithm we obtain an architecture that
combines the advantages of the SOM (the realization of profiles with high intra-cluster
similarity) with those of PAYL (the ability to detect when a packet is anomalous w.r.t. a
given profile), without having to take into account the length of the packet. This com-
bination should generate good detection profiles and the results we have obtained on the
DARPA benchmark substantiate our beliefs.

3.1 Architecture
Our starting point is the PAYL architecture. Our algorithm receives as input a packet

and classifies the packet, without prejudice for any of its properties, such as length, des-
tination port or application data semantics. The idea is that the classifier keeps as much
information as possible about packets (e.g. high-dimensional data) for the anomaly detec-
tion phase: we also want the classifier to operate in an unsupervised manner. This is a
typical clustering problem which can be properly tackled using neural networks in gen-
eral and Self-Organizing Maps (SOMs) [67] in particular. SOMs have been widely used
in the past both to classify network data and to find anomalies. Our architecture combines
a SOM, used for pre-processing, with a modified PAYL algorithm.

We now give a high-level description of the algorithms underlying POSEIDON. We
first describe the SOM. Later in the section, we introduce PAYL, focusing on the main dif-
ferences between our approach and the PAYL approach towards classification of network
data.

3.1.1 SOM Classification Model
A Self-organizing Map is a kind of artificial neural network [67]. It works by em-

ulating the cognitive classification process typical of the human brain and it is based on
competitive learning. Like any other neural network, the basic component of the network
structure is a neuron, and a SOM usually employs a single bi-dimensional neuron grid,
either rectangular or hexagonal. Each neuron n has a weight vector wn associated, and
the dimension of this vector is proportional to the input dimension. A SOM has two main
properties: (1) it works in un-supervised mode (i.e., the user does not need to provide
any information regarding the classification) and (2) it maps high-dimensional data into a
two-dimension space (the grid).

30

3.1. Architecture

The goal of learning in a SOM is accomplished by modifying the weight vector of
neurons in a certain manner. To select which weight vectors must be updated and how,
two parameters are used: the learning rate, that controls the “influence” of the input on
the neuron weight array components, and the update radius, that controls which neurons
to modify.

To accomplish the classification, a SOM goes through three phases: initialization,
training, and classification.

Figure 3.1: Training of a Self-organizing Map.

Initialization First of all, some parameters (number of neurons, learning rate, radius,
and number of training samples) have to be fixed. Each value influences the SOM clas-
sification. For instance, a small network with few neurons will classify different data
inputs in the same neuron while a large network will produce a too sparse classification.

31

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

Although these parameters are crucial, it is difficult to provide general guidelines, and
optimal values come from experiments.

To initialize the array of neuron weights, it is possible to either sub-sample some
training inputs or to use random values (in the same range of input values). The latter
approach is faster and, in case there is a large number of training samples at disposal, it
will not affect the classification.

Training The training phase consists of a number of iterations (also called epochs):
each training sample is used for one iteration only, thus the number of samples determines
the number of iterations. At each iteration, the current input sample x is compared using
a mathematical distance (e.g., Euclidean or Manhattan distance) to each neuron weight
vector wn in the network (this approach is known as “competitive learning”). The neuron
with the smallest distance is selected as winner (or best matching unit, BMU). After the
winner has been found, the algorithm continues by updating “neighbouring” neurons of
the winner neuron. A neuron is a neighbour if the trigonometric distance with the winner
is smaller than the current radius value. Each neighbour’s weight array nw is then updated
using the following formula n′wi

= nwi + α ∗ (xi − nwi). Eventually, the radius and the
learning rate values are decreased as follows: r = rinit ∗ #i−i

#i and α = 1.0 + (αinit −
1.0) ∗ #i−i

#i , where rinit is the initial radius value, αinit is the initial learning rate value,
#i is the total number of iterations and i is the i-th iteration.

Classification To classify an input x, the SOM proceeds similarly to the training phase.
The input is compared to each neuron weight vector wn: once the winner has been found,
that indicates the classification class of the input.

3.1.2 PAYL Classification Model
PAYL detects anomalies by combining an n-gram [40] analysis algorithm with a clas-

sification method based on clustering of packet payload data length. N-gram analysis
allows to capture features of data payload in an efficient way, and it has been used before
in the context of computer security (Forrester and Hofmeyr [51]).

PAYL employs a set of detection profiles (one for each endpoint it monitors): a profile
is identified by the unique pair destination address i and destination port j. Each profile
contains a set of models: a model Mijl stores incrementally the resulting values of the
n-gram analysis for packet payloads of length l, thus each payload length has a different
model, in a given profile.

The n-gram analysis (PAYL uses 1-gram analysis) computes relative byte frequency
values for a payload of length l. The byte frequency for byte value bh is #bh

l . Once this
value has been computed, PAYL updates the corresponding Mijl model. A model stores
two data: mean byte frequency (i.e., relative byte frequencies span across several payloads
of length l) and byte frequency standard deviation for each byte value (i.e., how relative
byte frequencies change across payloads). There are 256 possible different byte values in

32

3.1. Architecture

each payload, thus a model needs two vectors of size 256 for storing. Figure 3.2 shows
the internals of PAYL.

During the detection phase, the same values are computed for incoming packets and
then compared to model values: a significant difference from the model parameters pro-
duces an alert. To compare a payload to a model, PAYL uses a simplified version of the
Mahalanobis distance, which has the advantage of taking into account the average and
variance values of the variables measured:

distMahalanobis(M,x) =

√∑256
h=1

µMh
−xh

δ2Mh

Here, M and x are the selected PAYL Mijl model and the current input payload of
length l respectively. µMh

and δ2Mh
are the mean byte frequency and the byte frequency

standard deviation for byte value bh respectively (and stored inside the model Mijl). xh

is the byte frequency for byte value bh (#bh
l) for the current input payload.

The maximum number of detection models used by PAYL is: #i ∗#j ∗ l, where #i
is the number of destination addresses, #j is the number of destination ports and l is the
length of the longest payload. Thus, the total amount of memory required by PAYL is at
most #i ∗#j ∗ l ∗ 2 ∗ 256 ∗ k, where k is a constant representing the space required to
store a floating point number in the physical memory on a given architecture.

Figure 3.2: Internals of PAYL.

33

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

To reduce the otherwise large number of models to be computed, PAYL organizes
models in clusters. After comparing two neighbouring models using the Manhattan dis-
tance, if the distance is smaller than a given threshold t, models are merged: the means
and variances are updated to produce a new combined distribution. This process is re-
peated until no more models can be merged. Experiments with PAYL show [121] that a
reduction in the number of models of up to a factor of 16 can be achieved.

3.1.3 POSEIDON

POSEIDON combines the SOM with the models used by PAYL as follows. First,
we pre-process each packet by feeding the SOM with the payload data. The full packet
payload is analysed by the SOM, by comparing it with each neuron weight array. Because
in a Ethernet Local Area Network data in a TCP segment can contain up to 1460 bytes,
each neuron has a 1460 long weight array. In case the current data payload is shorter than
1460 bytes, additional (null) bytes are appended to reach a length of 1460 bytes. The SOM
returns the value of the most similar neuron (winning neuron). Afterwards, PAYL selects
the model using the SOM neuron value instead of the payload length. Technically, instead
of using model Mijl, PAYL uses the model Mijn where i and j are the usual destination
address and port and n is the classification derived from the neural network. Then, relative
byte frequency and standard deviation values are computed as usual. Figure 3.3 shows the
internals of POSEIDON.

Figure 3.3: Internals of POSEIDON.

34

3.2. Tuning and Benchmarks

Having added a SOM to the system, we must allow for both the SOM and PAYL to
be trained separately. In case the training is accomplished off-line, i.e., the training data
is dumped in advance, it is possible to either train both the SOM and then PAYL with
the same data or to train the two components with different data. We tested both modes
during our benchmarks and did not observe significant differences in the behaviour of the
system. It is possible to train the system on-line as well, by capturing live network traffic:
should that be the case, the SOM and PAYL are trained with different data (similarly to the
second off-line mode we introduced). Regarding memory consumption, we have to revise
the amount of detection models PAYL uses to: #i ∗#j ∗#n, where the new parameter
#n indicates the number of SOM network neurons.

To calculate the total amount of memory required by POSEIDON we have to take
into consideration the memory required to store a SOM as well: #n ∗ l ∗ k, where l is
the usual length of the longest payload and k the constant representing the space required
in physical memory to store a floating point number. Thus, the total amount of memory
required by POSEIDON is: #n ∗ l ∗ k + #i ∗#j ∗#n ∗ 2 ∗ 256 ∗ k.

Resilience to mimicry attacks Mimicry attacks [117, 118] can evade payload-based
ABSs that analyse byte frequencies. By carefully crafting an attack payload the attacker
is able to fool the IDS. The modified payload contains additional bytes, which are useless
to carry on the attack, but match the statistics of normal profiles. Examples of mimicry
attacks against PAYL have been shown by Fogla et al. [50]. The original PAYL algorithm
is vulnerable to mimicry attacks since it models only 1-gram byte distributions.

POSEIDON is resilient to mimicry attacks thanks to the combination of the SOM
with PAYL. The SOM analyses the input by taking into consideration the byte value at
i-th position within the whole payload. Thus, extra bytes inserted by the attacker would be
taken into consideration as well, resulting in a different classification than normal traffic.

3.2 Tuning and Benchmarks

In this section, we show the results of our benchmarks and compare the performance
of POSEIDON with PAYL and PHAD. PAYL and PHAD are the two reference ADS
based on payload. They are the only two payload-based ABSs which have published their
detection rate on the DARPA 1999 data set.

SOM parameters tuning The SOM algorithm needs several parameters on start-up:
the total number of network neurons, the function used to compute the distance between
vectors and the values of the learning rate and update radius. For the sake of transparency,
we report here the values used in our experiments.

Concerning the number of neurons, a small network would yield a too course classi-
fication, while a large network will produce a sparse classification. In addition, it is worth

35

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

bearing in mind that the computational load increases quadratically with the number neu-
rons.

Experimenting with different initialization parameters and using the quantization er-
ror method [67] to evaluate the classification given by the network, we found the best
SOM with the following parameters:

• Number of neurons: 96 (rectangular network of 12 by 8)

• Learning rate: 0.1

• Update radius: 4

• Distance function: Manhattan

Hinneburg et al. [55] state that the Manhattan distance performs better than the Eu-
clidean distance in presence of high-dimensional data: our experiments confirm this state-
ment also in the case of network data analysis.

3.2.1 Benchmarks
We have benchmarked POSEIDON against PAYL (also by replicating the experiments

on PAYL) and PHAD, using the same data used by PAYL and PHAD: the DARPA 1999
data set [83]. This standard data set is used as reference by a number of researchers
(e.g. [84, 92, 121]), and offers the possibility of comparing the performance of various
systems.

The DARPA 1999 data set is a synthetic set of network dumps. The data generated for
the evaluation span over 5 weeks and can be divided in training and testing data. Training
data (week 1 and 3 of traffic) is intended to be completely free of attacks, while testing data
(week 4 and 5) is intended to consist entirely of attack scenarios. An additional week of
traffic (week 2) is provided with labelled attacks, i.e., attacks are clearly marked with tem-
poral timestamps and classified. Testing data did not originally contain any timestamps
or classification of attacks, as the evaluation was run at researcher’s site and results were
sent back to the DARPA team. The process used to generate training data or attacks is not
deeply presented. The data is claimed to be similar to that observed during several months
of sampling data from a number of Air Force bases (see Lippman et al. [83]), but the data
set lacks of statistics to evaluate and establish similarities. The data set embodies nearly
300 attack instances, which exploit vulnerabilities both at network and application levels,
divided into four main categories (“User to Root”, “Remote to Local User”, “Denial of
Service”, and “Probe/Surveillance”). The simulated network contains several machines
equipped with various operating systems (ranging from Windows 95 to Solaris), but test-
ing data mainly contains attacks to four of them. No evidence is given that the network
configuration applies to an Air Force base.

This data set has been criticized because of the environment in which data were col-
lected and because attacks were adaptations of scripts or malware collected from a variety

36

3.2. Tuning and Benchmarks

of sources [87]; as explained by Mahoney and Chan [85], it is possible to tune an IDS
in such a way that it scores particularly well on this particular data set: some attributes
– specifically: remote client address, TTL, TCP options and TCP window size – have a
small contribution to the DARPA simulation, but have a large contribution to real traffic.
An IDS that takes into account the above-mentioned attributes is likely to score better
on the DARPA set than in real life. Since our system does not consider these attributes,
we can legitimately expect that the system in real life performs as well as it does on the
DARPA benchmark.

3.2.1.1 PAYL and POSEIDON

To compare our model with PAYL, we apply the same restrictions and conditions used
by Wang and Stolfo [121]: we focus only on inbound TCP packets, with data payload,
directed to hosts 172.016.0.0/16 and ports 1-1024.

We train the SOM clustering algorithm using internal network traffic of week 1 and
week 3 (12 days, 2.444.591 packets, attack free): for each different protocol we use a
different SOM. Then, we use the same data to build PAYL models taking advantage of the
classification given by the neural network. After this double training phase, it is possible
to use the testing weeks (4 and 5) to benchmark the network intrusion-detection algorithm.
This data contains several attack instances (97 payload-based attacks are detectable ap-
plying the same traffic filter mentioned above), as well as legal traffic, directed against
different hosts of the internal network: the attack source can be situated both inside and
outside the network.

To compute detection and false positive rates we apply the same approach used by the
PAYL authors. We consider an attack to be successfully detected when at least one packet
carrying the attack payload is correctly flagged as malicious; all of the other non-detected
packets carrying the attack payload are not considered to be false negatives. On the other
hand, each packet incorrectly flagged as malicious is considered to be a false positive.
Thus, the detection rate is attacked-based, while the false positive rate is packet-based.

Figure 3.4 shows a detailed comparison of PAYL and POSEIDON in terms of de-
tected attack instances (reported on the y axis) w.r.t. the false positive percentage (x axis).
Table 3.1 reports a summary of these results: the first column reports PAYL’s statistics as
we have inferred them from the graphs reported by Wang and Stolfo [121]. The second
column reports the figures we obtained by repeating Wang and Stolfo’s benchmarks. In
the repeated PAYL experiments we used an un-clustered architecture, which yields on
one hand a higher number of profiles, and on the other hand a different classification.
The third column reports POSEIDON’s result. POSEIDON outperforms PAYL on ev-
ery benchmarked protocol. However, there is a remark about FTP protocol (see the next
paragraph).

Remark During the FTP protocol benchmarks we found a high rate of false positives
(more than 3000 packets) both with PAYL and with POSEIDON: all of these packets are

37

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

Figure 3.4: Detection rates for ports 21 (FTP), 23 (Telnet), 25 (SMTP) and 80 (HTTP): the
x-axis and y-axis present false positive rate (packet percentage) and detection rate (attack
instance percentage) respectively. POSEIDON yields a higher detection rate compared
with PAYL at the same false positive rate. For the graph relative to port 21 see Remark in
Section 3.2.1.1.

sent by the same source host, which is sending FTP commands in a way that is typical of
the Telnet protocol (one character per packet, with the TCP flag PUSH set). These packets
are marked as an attack because the training model does not contain this kind of traffic
over the FTP control channel port, although it is normal traffic. During the experiments
with our implementation of PAYL, we found the same behaviour, although Wang and
Stolfo do not report it: for this reason we decided to present benchmarks results of PAYL
and POSEIDON also without taking into account these packets (the figures marked with
an asterisk ∗ in Table 3.1 and the graph in Figure 3.4).

3.2.1.2 PHAD and POSEIDON

Table 3.2 compares our results with PHAD: it is not possible to make a full com-
parison between the two systems, because of the restrictions used by the PHAD authors
(they restrict to a maximum total amount of 100 false positives during 10 days of testing).

38

3.2. Tuning and Benchmarks

PAYL PAYL exp POSEIDON
Number of

profiles used 4065
(11312 -

unclustered) 1622

HTTP
DR 89,00% 90,00% 100,00%
FP 0,17% 0,73% 0,0016%

FTP
DR 95,50% 94,74% 100,00%
FP 1,23% 11,41% (1,21%∗) 11,31% (0,93%∗)

Telnet
DR 54,17% 53,65% 95,12%
FP 4,71% 4,94% 6,72%

SMTP
DR 78,57% 73,34% 100,00%
FP 3,08% 8,35% 3,69%

Overall DR
with FP < 1% 58,8% (57/97) 73,2% (71/97)∗

Table 3.1: Comparison between PAYL, our implementation of PAYL (PAYL exp) and
POSEIDON; DR stands for detection rate (attack instance), while FP is the false positive
rate (packets). The last row reports the detection rate when the FP stays below 1% (num-
ber of detected attack instances over total number of detectable attacks, 97). Regarding
the FP rate in FTP protocol (marked with a *), we have to calculate this value in a different
way than for the other protocols (see Remark in Section 3.2.1.1 for a detailed description).

Nonetheless, we could legitimately compare the two systems on the HTTP protocol, on
which POSEIDON meets the restrictions above.

Summary of benchmark results Unfortunately, there is no other public available
data set suitable to compare our approach with previous work on anomaly intrusion de-
tection: many authors use the KDD 99 data set [23] in which regrettably payload data is

Type Attack PHAD POSEIDON
Probe ntinfoscan 66,67% (2/3) 100% (3/3)

Denial of Service
apache2 100% (3/3) 100% (3/3)
back 0% (0/4) 100% (4/4)
crashiis 71,43% (5/7) 100% (7/7)

Remote to Local
phf 66,67% (2/3) 100% (3/3)
ppmacro 33,34% (1/3) 100% (3/3)

Overall detection rate 65% (13/20) 100% (20/20)

Table 3.2: Comparison between PHAD and POSEIDON detection rates.

39

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

discarded. Because we use payload information, we can not use this data set to benchmark
POSEIDON and models that use this data set are not directly comparable with ours.

Concluding, benchmarks show that our architecture is more effective than PAYL in
terms of detection and false positive rates. Our modification to the original PAYL algo-
rithm consists of replacing the packet classification based on payload length with a classi-
fication based on the actual payload data. The new classification performed by the SOM
leads to better results because PAYL builds more homogeneous detection models, as sim-
ilar payloads are incorporated in the same model although they could show a significant
difference in length.

3.3 Related Work

In this section we report on related work. First we describe other neural network-
based systems then we address statistics-based systems.

Neural Network-based Systems We start by presenting other neural network-based
ANIDSs. We cannot benchmark these systems with POSEIDON because their authors use
either private data sets (Cannady [27], Labib and Vemuri [74] and Ramadas et al. [105]),
or data sets that do not contain payload information (Depren et al. [46]) or do not provide
precise statistics (Nguyen [92]).

Cannady [27] proposes a SOM-based NIDS in which network packets are first classi-
fied according to nine features and then presented to the neural network. Attack traffic is
generated using a security audit tool. The author extends this work in [28, 29].

Nguyen [92] uses a one-tier architecture, consisting of a SOM, to detect two attacks
in the 1999 DARPA data set: the first one (mailbomb) against the SMTP service, and the
other one (guessftp) against FTP.

Labib and Vemuri [74] use a SOM to identify Denial of Service attacks. They discard
information about payload and use only packet header information; their data is collected
from a private network (described in a general way) and is not publicly available.

Ramadas et al. [105] use a SOM to detect attacks against DNS and HTTP services (us-
ing a private data set): they use a pre-processor to summarize some connection parameters
(source and destination host and port) and then add several values to track connections be-
haviour: the information is then merged in a data structure used to fire events related to
the connection and to feed the neural network.

Depren et al. [46] present a hybrid IDS based on SOMs and benchmark it on the KDD
99 data set [23]. They feed the neural networks (one for each protocol type) with six fea-
tures extracted from each connection (duration, protocol type, service type, status, total
bytes sent and received) and then use the quantization error method to detect anomalies.
The system is connection-oriented, therefore attacks can be detected only when the con-
nection is completely re-assembled. Regarding their architecture, the authors state that the

40

3.3. Related Work

SOM used to model TCP connections uses 1515 neurons; which in our opinion is quite
large, if compared with the ones used by our system.

Statistics-based Systems We now report on statistics-based ANIDSs. Again, we can-
not benchmark them against POSEIDON because they either use only header information
(Staniford et al. [111], Javitz and Valdes [59]) or employ benchmarking data that is not
publicly available (Kruegel et al. [71]).

Barbará et al. [21, 20] use data mining techniques to detect attacks on network in-
frastructures: their system ADAM first applies association rules techniques to identify
abnormal events in traffic data; then a classification algorithm is used to classify the ab-
normal events into normal instances and abnormal instances. The original work has been
expanded in Barbará et al. [22]. Lee et al. [78, 80] propose a comprehensive framework
based on data mining. For a complete overview of data mining techniques applied to
intrusion-detection see Julisch [62].

The NIDES [59], PHAD [84] and SPADE [111] systems rely on statistical models
computed on normal network traffic: they work by extracting features from the packet
header fields and trigger an alarm when they recognize a significant deviation from the
normal model; most of the features extracted are related to IP addresses (source and desti-
nation), destination service port and TCP connection state (PHAD uses up to 34 attributes
coming from Ethernet, IP and application layer protocols packets.) Our approach differs
from the ones mentioned here in the following aspects. First, it is payload-based, we use
only destination address and service port numbers to build a profile for each port moni-
tored, without taking care of other header features (of the above systems only PHAD con-
siders payload information, we have compared it with our system in the previous section.)
Second, we have a two-tier architecture in which the SOM is used only to pre-process
information.

Shifting to payload-based systems, Kruegel et al. [71] show that it is possible to find
the description of a system that computes a payload byte distribution and combines this
information with extracted packet header features. They first sort the resultant ASCII
characters by frequency and then aggregate them into six groups. As argued by Wang and
Stolfo [121], this leads to a course classification of the payload.

PAYL works in a way similar to Kruegel et al. [71] but models the full byte distribution
based on payload data length and operates a clustering phase to cover possible missing
lengths. The PAYL architecture is made up of a single tier, while our architecture has two
different layers: the first one, made up by a SOM, is delegated to classify packets only
using payload data information, without using payload length value. The second layer is a
modified version of PAYL that computes byte distribution models using the classification
information coming from the first layer and extracting destination IP address and service
port from packets header.

Zanero [124] presents a two-tier payload-based system that combines a self-organizing
map with a modified version of SmartSifter [123]. While this architecture is similar to
POSEIDON, a full comparison is not possible because the benchmarks of Zanero [124]

41

Chapter 3. POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection
System

concern only the FTP service and no details are given about experiments execution. A
two-tier architecture for intrusion-detection is also outlined in Zanero and Savaresi [125].

3.4 Conclusion
We present an approach to network intrusion detection that combines two different

techniques: a self-organizing map and the PAYL algorithm. We modify the original PAYL
to take advantage of the unsupervised classification given by the SOM, which then func-
tions as pre-processing stage.

Our experiments on the DARPA data set show that our approach reduces the number
of profiles used by PAYL (payload length can vary between 0 and 1460 in a Ethernet Local
Area Network, while the SOM neural network used in our experiments has less than one
hundred neurons.) Our experiments show that PAYL without SOM requires 3 times as
many profiles as with the SOM pre-processing (see Table 3.1).

We have extensively benchmarked our system w.r.t. PAYL [121] (also by replicating
the PAYL experiments) and PHAD [84] using the 1999 DARPA benchmark [83]. PAYL
and PHAD are the reference ABSs based on payload analysis. On this data set, our exper-
iments show a higher detection rate and lower number of false positives than PAYL and
PHAD, and a reduction of the number of profiles used w.r.t. PAYL. This is the main con-
tribution of POSEIDON to the usability issues: by raising fewer false alerts, the system
reduces the user burden as well.

We benchmark POSEIDON extensively against the PAYL algorithm and data sets
showing a higher detection rate and a lower false positive rate for POSEIDON.

POSEIDON is not only used to detect network attacks, but it is also the core compo-
nent of SilentDefense. In the following chapters, we will show how, by using an adapted
POSEIDON core, ATLANTIDES and Sphinx perform their tasks, and how they contribute
to usability issues.

42

Chapter 4
ATLANTIDES: an Architecture for
Alert Verification in Network Intrusion
Detection Systems∗

The Achilles’ heel of a NIDS lies in the large number of false positives that occur [89]:
practitioners [86, 99] as well as researchers [16, 33, 61] observe that it is common for a
NIDS to raise thousands of alerts per day, most of which are false alerts. Julisch [63]
states that up to 99% of total alerts may not be related to real security issues. Notably,
false positives affect both SBS and ABS [17]. A high rate of false alerts is – according to
Axelsson [16] – the limiting factor for the performance of an IDS. False alerts cause an
overload for IT personnel [86], who must verify every single alert, a task that is not only
labor intensive but also error prone [39]. For instance, when considering a NIDS, with a
hundred thousands input packets per hour (which is a reasonable figure for a web server),
a false positive rate of 1% still generates a thousand false positives per hour, which is more
than a typical company can afford to handle. Indeed, a high false positive rate can even
be exploited by attackers to overload IT personnel, thereby lowering the defences of the
IT infrastructure. Finally, when a NIDS raises too many false positives, system managers
tend to ignore alerts raised.

The main reason why a NIDS raises false positives is that – quoting Kruegel and
Robertson [69] – it is often run without any (or very limited) information about the net-
work resources it protects (i.e., the context). Chaboya et al. [30] state that the context
knowledge (e.g., network and system configurations) can improve significantly alert ver-
ification. On the other hand, building and updating a database of the configurations or
running vulnerability assessment tools (e.g., Nessus [141]) to provide context knowledge

∗This chapter is a minor revision of the paper with the same title published in the Proceedings
of the 21st Large Installation System Administration Conference (LISA ’07), pages 141 - 152,
USENIX Association, 2007. The paper includes the pseudo code of ATLANTIDES, which is not
reported in this work.

43

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

is expensive and often not feasible when dealing with complex systems (indeed these
activities require additional labor of IT personnel, since they cannot be completely au-
tomated.) Most current techniques to improve alert verification are tailored for specific
attacks [53, 119] (e.g., worm-like) or support only signature-based NIDSs [101, 109].

Our hypothesis is that, in many relevant situations, the context information can be
obtained by a systematic (and automatic) anomaly-based analysis of the output traffic of
the monitored network services; we believe this is possible when the output traffic presents
some regularities, which in practice is often the case.

Contribution To substantiate our claims, we have developed ATLANTIDES (Archi-
tecture for Alert verification in Network Intrusion Detection Systems) an innovative ar-
chitecture for easing the management of any NIDS (be it signature- or anomaly-based)
by reducing, in an automatic way, the number of false alarms a NIDS raises. The main
idea behind ATLANTIDES is simple: a successful attack often causes an anomaly in the
output of the service [126], thus modifying the normal output outcome. Detecting this
anomaly can help in reducing false alerts. For instance, a successful SQL Injection at-
tack [149] against a web application often causes the output of SQL table content (e.g.,
user/admin credentials) rather than the expected web content.

ATLANTIDES is completely network-based, i.e., it relies only on information gath-
ered over the network, without involving any host-based component. It works by analysing,
using n-gram analysis (see Section 3.1.2), and modeling the normal output payload of the
monitored network services that is expected to be sent in response to a client request.
This normal output is specific to the site; therefore the derived models reflect – in a way
– the network/system context. By correlating the anomalies detected on the output with
the alerts raised by the NIDS monitoring the input traffic, we can discard a number of the
latter as being false alerts. This way we obtain a system that raises considerably fewer
false positives than the original NIDS, without this correlation system.

In the past, simple correlations between input and output traffic have already been
used to identify possible worm attacks [53, 119]. To the best of our knowledge, AT-
LANTIDES is the first proposed solution for alert verification that:

• Works in combination with both signature- and anomaly-based NIDSs.

• Operates in a completely automatic way after a quick setup, without any further
human involvement (i.e., reducing the IT personnel overload), thus improving us-
ability and easing NIDS management.

We benchmarked ATLANTIDES in combination with Snort, as well as in combina-
tion with POSEIDON. We carried out benchmarks both on a private data set as well as on
the common DARPA 1999 data set (for the sake of completeness and to allow duplication
of our results). In seven out of eight cases, our benchmarks show a reduction of false
positives between 50% and 100%.

Since nowadays attacks against connection-less protocols are less common (see the
Common Vulnerabilities and Exposures [147] database for detailed statistics), we have

44

4.1. Preliminaries

designed ATLANTIDES with the explicit goal of reducing false positives when monitor-
ing network services based on the TCP protocol (e.g., HTTP, SMTP and FTP) where a
response is typically sent by the server to the client

Limitations of the approach Because ATLANTIDES is based on output payload
analysis, our architecture is designed for TCP-based client/server network services (such
as HTTP). Like all (external) payload-based analysis, ATLANTIDES cannot work prop-
erly with encrypted data unless the cryptographic keys are provided.

Although we do not aim to handle all kinds of possible attacks (e.g., worms or DDoS
attacks work by generating a huge number of legal connections), we believe our solution
can improve the accuracy of a NIDS without any additional component installed directly
on the monitored hosts. An additional component could affect under certain circum-
stances host performance, i.e., a high number of connections.

Since ATLANTIDES relies on the output generated by the monitored service, an at-
tacker, by carefully crafting an attack payload, could forge a legitimate output after the
intrusion to fool the alert verification process. Todd et al. [112] present such a technique
to alter the alert verification process. However, this technique has some limitations and
works under some circumstances only. The attacker has to inject some shell code (i.e., en-
coded machine instructions) to be executed by the victim to forge the reply, or to “jump”
to some code already in memory. Thus, only vulnerabilities that allow some code in-
jection can be exploited to generate a normal request. Secondly, the memory area the
attacker fills in with injected code must be large enough to contain both the attack and the
response-forging code. For instance, most buffer overflow attacks target buffers which are
normally small in size [30], thus it could be difficult to include the necessary payload .
Todd et al. note that a payload-based IDS could examine the additional code used to forge
the fake response and detect the attack.

4.1 Preliminaries
In this section, we introduce the concepts used in the rest of the chapter and explain

how false positives arise in SBSs and ABSs.

4.1.1 The Base-rate Fallacy
Because intrusions are rare events, even a low false alert rate does not result in an high

detection rate (this is known in the literature as the base-rate fallacy, Axelsson [17]).
Assuming an IDS analyses 1.000.000 packets per day, and 100 attacks target the en-

vironment the IDS monitors, the probability of an intrusion is P (I) = 10−4. Let P (A|I)
be the probability of detection and P (A|¬I) the probability of raising a false alert. Then,
it is possible to calculate the probability that a raised alert is actually true (P (I|A)) by
using the Bayes theorem:

45

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

P (I|A) = P (I)∗P (A|I)
P (I)∗P (A|I)+P (¬I)∗P (A|¬I)

With an (unrealistic) detection rateP (A|I) = 1.0 and a low false alert rateP (A|¬I) =
10−3 we obtain a final value P (I|A) = 0.09. This means that nine tenth of alerts
are not related to real attack attempts. With more realistic values P (A|I) = 0.7 and
P (I|A) = 0.01, we obtain that 99% of all raised alerts will be false.

4.1.2 False Positives in Signature-based Systems
An SBS raises an alert every time the current input matches a signature loaded into

its database. Consider for example the path traversal attack, which allows access to files,
directories, and commands residing outside the (given) web document root directory. This
attack occurs in a web application that does not properly sanitize inputs which are used
to retrieve some file content from the file system, and it allows the attacker to read files
outside the safe web application context (e.g., the user password file). The most ele-
mentary path traversal attack uses the “../” character sequence to alter the resource
location requested in the URL. Variations include valid and invalid Unicode-encoding
(“..%u2216” or “..%c0%af”), URL encoded characters (“%2e%2e%2f”), and dou-
ble URL encoding (“..%255c”) of the backslash character (excerpted from the WASC
Threat Classification [149]).

To detect this attack class, an SBS (using an out-of-the-box configuration) raises an
alert each time it sees the pattern “../” in the incoming traffic. Unfortunately, this pat-
tern could be present in legal traffic too; some content management systems insert relative
paths in request parameters to load files, e.g., related to the user language, which causes
an SBS to raise a high number of false alerts. These false alerts can be avoided by deac-
tivating the specific rule. On the other hand, this could prevent the NIDS from detecting
this sort of attacks.

Tuning Signature-Based Systems The main reasons why alerts raised by an SBS
turn out to be either false or irrelevant are the following:

• A signature can be too general (see Section 2.2.1.1)

• The monitored environment is not susceptible to a certain vulnerability

• Mis-configured network devices or services producing atypical output (usually, in
this case, it is possible to observe recurrent and periodic phenomena).

A good deal of false positives can be suppressed by a tuning activity: this activity, based
on deactivation of unneeded signatures, requires a thorough analysis of the environment
by qualified IT personnel. Finally, to remain effective, an SBS requires continuous config-
uration updates to reflect changes in the environment: new vulnerabilities are discovered
daily, new signatures are released regularly, and systems may be patched, thereby (possi-
bly adding or) removing vulnerabilities.

46

4.2. Architecture

4.1.3 False Positives in Anomaly-based Systems
The high false positive rate of an ABS is generally cited as one of the main disad-

vantages. The most commonly used tuning procedure for an ABS is finding an optimal
threshold value, i.e., the best compromise between a high number of detected attacks and
a low (or acceptable) number of false positives. This is typically carried out manually by
trained IT personnel: different improving steps can be necessary to obtain a good balance
between detection and false positive rates.

4.2 Architecture
The ATLANTIDES architecture (see Figure 4.1) consists of one external and two

internal components. The external component is the NIDS monitoring the incoming traf-
fic. We do not make any assumption about it except that it is capable of raising an alert:
ATLANTIDES can work together with any kind of NIDS (signature- or anomaly-based).

Figure 4.1: The ATLANTIDES architecture.

The first internal component is the output anomaly detector (OAD), which is actually
an anomaly-based NIDS monitoring the outgoing traffic. The OAD employs a statistical

47

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

model describing the normal output of the monitored network service(s), and flags any
behaviour that significantly deviates from the norm as the result of a possible attack.

The second internal component is the correlation engine (CE), which tracks network
connections (using stateful-inspection [131]) and correlates alerts related to incoming traf-
fic and raised by the input NIDS with the output produced by the OAD.

ATLANTIDES works as follows (see Figure 4.1). The input NIDS monitors the in-
coming traffic while, simultaneously, the OAD (after a training phase) analyses the output
of network services. When the input NIDS raises an alert, this is forwarded to the CE,
together with the information regarding the communication endpoints (i.e., source and
destination IP addresses, source and destination TCP ports as well as sequence numbers
and communication status) of the packet that raised the alert. The CE uses a hash-table
to store this information, using less than 20 bytes per entry: thus, the CE does not require
much memory to store the information, and ATLANTIDES can handle even a rate of 1000
alerts per second with a total memory space of 1 MB (in case the connections are kept in
memory, e.g., for a maximum time of 60 seconds before being dropped.) At this time, the
alert is not considered an incident yet (it is a pre-alert) and is not forwarded immediately
to IT specialists. Next, the CE marks the communication related to the given endpoints
as suspicious and waits for the output of the OAD: if the OAD detects an anomaly in
the outgoing traffic related to the tracked communication, then the system considers the
alert as an incident (i.e., a positive) and the alert is forwarded to the IT specialists for
further handling and countermeasure reactions, otherwise it is considered a false positive
and discarded. The IT personnel can manually set (or adjust) the time value t that the CE
waits before dropping an entry from its hash-table, because no output has been produced:
during our experiments we fixed this value to 60 seconds. This time could be critical if an
attack results in a large data transfer (but in this case the OAD should detect the anomaly
in the transferred data) or in the case where the attacker is able to delay the server response
(although this seems quite difficult to realize and the literature does not provide any ex-
ample of such an attack). Although a delay is introduced to allow the OAD to process the
data sent back to the client, this does not affect the detection itself: in fact, the delay, in
the worst case of no output sent at all, is equal to the time value t.

It should be clear from the architecture that ATLANTIDES will never raise more false
positives than its input NIDS. In fact, the output of the OAD is evaluated only when an
alert has already been raised by the input NIDS: the OAD could classify the alert-related
outgoing traffic by mistake as anomalous and then forward the alert as a true positive, but
this would have happened in any case, if considering the output of the input NIDS only.
Thus, the worst case is that a false positive is not suppressed, but no new false alert can
be generated.

On the other hand, we have to discuss the possibility that ATLANTIDES will intro-
duce additional false negatives (w.r.t. the input NIDS). This happens every time the OAD
classifies an alert corresponding to a true attack as a false alert. False negatives are a com-
mon problem for alert verification systems. Because our solution bases its verification on
an anomaly-based engine, the threshold used to discern outgoing traffic can be adjusted

48

4.2. Architecture

manually by IT specialists to avoid false negatives (previous proposed solutions cannot be
tuned in the same way, e.g. [69]).

Missing output response What we just described is the most common behaviour;
nevertheless we have to take into account that there are attacks which, e.g., aim to disrupt
completely the service or that, exploiting a buffer overflow, radically modify the normal
execution. For instance, Chaboya et al. [30] experimentally verified that most of the buffer
overflow attacks against an HTTP server do not produce any output after a successful
attempt.

In this case, if the OAD does not detect any output related to the pre-alert raised
by the NIDS, during the time window t, then the pre-alert is considered an incident and
is forwarded to an IT security specialist. Although this could be considered rough, be-
cause the missing response could occur for reasons other than a successful attack (e.g., an
internal error), the ATLANTIDES strategy does not introduce any additional false nega-
tives/positives, since with a single NIDS (monitoring the incoming traffic) the alert would
be forwarded anyway.

4.2.1 The Output Anomaly Detector
The OAD is basically a payload-based ANIDS, monitoring the output of a network

service rather than the input of it. In our embodiment we choose to use POSEIDON as the
OAD, because we are familiar with it and it gives better results than its leading competitor
(see Section 3.2.1).

Using an SBS as OAD (e.g., Snort) would present serious limitations. First, an SBS
uses signatures to detect anomalies, thus a new set of signatures has to be created. Creating
and maintaining a set of signatures for outgoing traffic is a thorny and labor-intensive task,
as these signatures heavily depend on local applications, and must be updated each time
that modifications to the application output occur. Secondly, it is difficult to characterize
the normal output of an application in terms of a signature: two instances of the same
application could generate dissimilar output, as user behaviour influences it.

The fact that the OAD is anomaly-based (rather than signature-based) has various ad-
vantages. An anomaly-based OAD can adapt to the specific network environment/service
and it does not require the definition of new signatures to detect anomalous output, work-
ing in an unsupervised way (after initial set up). The disadvantage of being anomaly-based
is that our OAD needs an extensive (though unsupervised) training phase. However, our
OAD (POSEIDON) can incorporate modifications in its model, without starting training
over, thus easing the update process when changes occur.

Setting the OAD Threshold As we mentioned in Section 2.3.4, the threshold set-
ting is an important task, usually accomplished manually. While running experiments
with ATLANTIDES, we have found an approach to automatically set this parameter (IT
personnel can later adjust it as necessary). In our experiments we address this issue:

49

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

Figures 4.2 and 4.3 show how different threshold values influence the effectiveness of
ATLANTIDES.

To derive a quick way to set up this value, we consider the maximum distance value
(tmax) between the analysed data and the model observed during the training phase, and
calculated using the Mahalanobis distance function used by POSEIDON inside the OAD.
Our experiments show that setting the threshold at 3tmax

4 , usually yields reasonably good
results in terms of accuracy and completeness.

4.3 Benchmarks
To validate our architecture, we benchmark ATLANTIDES in combination with Snort

as well as ATLANTIDES in combination with POSEIDON. To carry out the experiments,
we employ two different data sets. First, we benchmark the system using a private data set.
Secondly, we use the DARPA 1999 data set, as it has the advantage that it allows one to
compare experiments. No other data set, containing sufficient data to perform verifiable
benchmarks, is publicly available. The detection and false positive rates are calculated
using the same approach introduced in Section 3.2.1.

4.3.1 Tests with a Private Data Set

To carry out our validation we consider a private data set we collected at the University
of Twente: this is data set A. Data were collected on a public network for 5 consecutive
working days (24 hours per day), logging only TCP traffic directed to (and originating
from) a heavy-loaded web server (about 10 Gigabytes of total traffic per day). This web
server hosts the department official web sites as well as student and research staff personal
web pages: thus, the traffic contains different types of data such as static and dynamically
generated HTML pages and, especially in the outgoing traffic, common format documents
(e.g., PDF) as well as raw binary data (e.g., software executables). We did not inject any
artificial attack. To see how the system behaves in the sub-optimal situation in which the
IT security specialist does not have the time to clean up the training data set (a situation
that is likely to occur often in practice), the data set was not made attack-free.

We focus on HTTP traffic because nowadays Internet attacks are mainly directed to
web servers and web-based applications [66]: Kruegel et al. [73] state that web-based
attacks account for 20%-30% from 1999 to 2004 in the Common Vulnerabilities and Ex-
posures database [147]; Symantec Corporation [144] reports that, in the first-half of year
2008, 65% of total discovered vulnerabilities were related to web services and, during the
same period, more than 60% of easily exploitable vulnerabilities (whenever the exploita-
tion code is not needed or well-known) affected web applications. Symantec states that
typical examples of easily exploitable vulnerabilities are SQL Injection and Cross-Site
Scripting (XSS) attacks.

To train the anomaly-detection engines of both POSEIDON and the OAD on data

50

4.3. Benchmarks

Protocol POSEIDON
POSEIDON

+
ATLANTIDES

HTTP
DR 100% 100%
FP 1683 (2,83%) 774 (1,30%)

Table 4.1: Comparison between POSEIDON stand-alone and POSEIDON in combina-
tion with ATLANTIDES using data set A; DR stands for detection rate (attack instance
percentage), while FP is the false positive rate (packets and corresponding percentage);
ATLANTIDES reduces false positives by more than 50% without affecting the detection
rate (i.e., without introducing false negatives).

set A, we used a snapshot of the data collected during working hours (approximately
3 hours, or 1.8 Gigabytes of data, randomly chosen). The chosen training data set has
not been pre-processed and made attack-free: thus it is possible that the model includes
some malicious activity (that could negatively affect accuracy). For the same reason, we
randomly chose another snapshot (approximately 1.8 Gigabytes of data) to benchmark
POSEIDON stand-alone against POSEIDON in combination with ATLANTIDES.

An ABS can achieve a 100% detection rate using a very low threshold value, but this
negatively affects the false positive rate too (as we mentioned in Section 4.1.3): we set the
threshold of POSEIDON experimentally to achieve the best detection rate (at least one
packet detected per attack instance) at the lowest false positive rate possible.

The alerts have been classified as follows: we found evidences of XSS and SQL Injec-
tion attacks [149] (and this is not surprising, accordingly to Symantec’s report), plus some
probes checking for well-known paths (33 attacks in total). Table 4.1 summarizes the re-
sults we obtained. We cannot compare ATLANTIDES in combination with Snort on data
set A for the reason that Snort does not find any true attack to the system (Snort raises only
false alerts): this is not surprising, since Snort has only few signatures devoted to SQL
Injections and XSS attacks. By setting a high threshold value in ATLANTIDES we could
have removed all the false positives, but this would give no indication of the completeness
and accuracy of ATLANTIDES. Figure 4.2 shows detailed results of ATLANTIDES on
data set A.

4.3.2 Tests with the DARPA 1999 Data Set

The testing environment of the DARPA 1999 data set contains several internal hosts
that are attacked by both external and internal attackers: in our tests, we consider only
inbound and outbound TCP packets that belong to attack connections against hosts in-
side the network 172.16.0.0/16, to replicate the experiments with POSEIDON (see Sec-
tion 3.2.1). We focus on FTP, Telnet, SMTP and HTTP protocols. This is due to the fact
that only these protocols, among the ones contained in this data set, provide us with a

51

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

Figure 4.2: Detection rates for POSEIDON in combination with ATLANTIDES using
data set A (HTTP protocol): the x-axis and y-axis present false positive rate (packets) and
detection rate (attacks instances) respectively. ATLANTIDES presents always a lower
false positive rate than POSEIDON, considering the same detection rate. It is possible to
notice how different ATLANTIDES threshold settings (tmax) affect detection and false
positive rates.

sufficient number of samples to train the OAD and, at the same time, allow us to compare
our architecture with POSEIDON stand-alone.

We train the OAD of ATLANTIDES with the data of weeks 1 and 3 (attack-free):
for each different protocol we use a different OAD instance. Afterwards, we test AT-
LANTIDES together with both POSEIDON and Snort using week 4 and week 5 traffic.
In order to distinguish between true and false positives, we refer to the attack instance
table provided by the DARPA data set authors.

Table 4.2 reports a comparison of the detection and false positive rates of Snort stand-
alone (first column), Snort in combination with ATLANTIDES (second column), POSEI-
DON stand-alone (third column) and POSEIDON in combination with ATLANTIDES
(fourth column).

In both cases, ATLANTIDES achieves a substantial improvement on the stand-alone
system, neither affecting the detection rate nor introducing false negatives; ATLANTIDES
reduces the false positive amount by at least 50% on every protocol benchmarked, except
for the Telnet protocol when POSEIDON is analysing the input. Here we elaborate more
about this discrepancy. Snort and POSEIDON employ two different detection engines,
and they raise alerts when different conditions are met. Thus, an alert raised by POSEI-
DON is likely to be determined by the fact that during the training phase the system did
not observe that input traffic. The same applies to the output, and even a slightly different

52

4.4. Related Work

Protocol Snort
Snort

+
ATLANTIDES

POSEIDON
POSEIDON

+
ATLANTIDES

HTTP
DR 59,9% 59,9% 100% 100%
FP 599 (0,069%) 5 (0,00057%) 18 (0,0016%) 0 (0,0%)

FTP
DR 31,75% 31,75% 100% 100%
FP 875 (3,17%) 317 (1,14%) 3303 (11,31%) 373 (1,35%)

Telnet
DR 26,83% 26,83% 95,12% 95,12%
FP 391 (0,041%) 6 (0,00063%) 63776 (6,72%) 56885 (5,99%)

SMTP
DR 13,3% 13,3% 100% 100%
FP 0 (0,0%) 0 (0,0%) 6476 (3,69%) 2797 (1,59%)

Table 4.2: Comparison between Snort stand-alone, Snort in combination with AT-
LANTIDES, POSEIDON stand-alone and POSEIDON in combination with AT-
LANTIDES using the DARPA 1999 data set: DR stands for detection rate (attack in-
stance percentage), while FP is the false positive rate (packet percentage); ATLANTIDES
reduces false positives by more than 50% most of the times, being close to zero in 3
tests, without affecting the detection rate (i.e., without introducing false negatives). AT-
LANTIDES is not applied to SMTP traffic in combination with Snort because in this case
Snort raises no false positives.

input could determine a significant different output (think of the command “ps” or “ps -a”,
the latter usually brings up a longer list of running processes). The Telnet protocol has
a great output variability, and normal traffic in the testing traffic can be mistaken; on the
other hand, protocols like HTTP, FTP and SMTP present well-defined protocol schemas
to exchange information between client and server.

4.4 Related Work
The problem of alert verification has been addressed using two different kinds of ap-

proaches: we have techniques for identifying true positives, and techniques for identifying
false positives. The main difference between our work and the papers described below is
that we take into account the outgoing traffic of the system.

Identifying true positives Kruegel and Robertson [69] introduce a plug-in for Snort
to verify alerts: the plug-in integrates the Nessus vulnerability scanner into the Snort core.
When an alert is raised, this is not immediately forwarded but it is firstly passed to the
verification engine. Since every Snort signature comes with a unique identifier (assigned
by CVE [147]), this index is used to check the presence of a corresponding Nessus attack
script. If found, the script is executed against the target machine/network: the output is
extracted and used to flag the alert as either true or false; an output cache is used to avoid
further verification for the same alert/target. Although this approach is effective, there are

53

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

Figure 4.3: Detection rates for POSEIDON in combination with ATLANTIDES using
DARPA 1999 data set (SMTP protocol): the x-axis and y-axis present false positive rate
(packets) and detection rate (attacks instances) respectively. ATLANTIDES presents al-
ways a lower false positive rate than POSEIDON, considering the same detection rate. It
is possible to notice how different ATLANTIDES threshold settings affect detection and
false positive rates.

several drawbacks: one has to keep the Nessus attack script database up to date, and this
approach works only for a SNIDS, while ATLANTIDES can work with both types and in
a complete automatic way (i.e., no manual updates are needed).

Ning et al. develop a model [98] and an intrusion-alert correlator [94] to help hu-
man analysts during the alert verification phase. This work is based on the observation
that most attacks consist of several related stages, with the early stages preparing for
the later ones. Hyper-alert correlation graphs are used to represent correlated alerts in
an intuitive way. However, this correlation technique is ineffective when attackers use
a different (yet not spoofed) IP source address at each attack step. Ning and Cui [94]
demonstrate the effectiveness of this approach when applied on a small data set (due to
the exponential complexity of hyper-alert graphs): in [95, 97] the same authors present
other utilities they developed to facilitate the analysis of large sets of correlated alerts, and
report some benchmarks employing network traffic used during the DEFCON 8 Capture
the Flag (CTF) event [133]. ATLANTIDES does not present the same limitations on data
set size.

Lee and Stolfo [79] develop a hybrid network and host-based framework based on
data mining techniques, such as sequential pattern mining and episode rules, to address
the problem of improving attack detection while maintaining a low false positive rate. The
system detects attacks by combining different models and comparing them with actual

54

4.4. Related Work

traffic features. Benchmarks have been conducted using the DARPA 1998 data set [82]:
the detection rate for different attack typologies has a minimum value of 65% with a
false positive rate always below 0.05%. Since Lee and Stolfo use a different data set, we
cannot compare directly the two approaches: however, we note that our approach does
not use information collected from the operating system hosting the monitored network
service(s), thus ATLANTIDES can work on-line without affecting the host performance.

Identifying false positives Pietraszek [101] tackles the problem of reducing false
positives by introducing an alert classifier system (ALAC, Adaptive Learner for Alert
Classification) based on machine learning techniques. During the training phase, the
system classifies alerts into true and false positives, by attaching a label from a fixed set
of user-defined labels to the current alert. Then, the system computes an extra parameter
(called classification confidence) and presents this classification to a human analyst. The
analyst’s feedback is used to generate training examples, used by the learning algorithm to
build and update its classifiers. After the training phase, the classifiers are used to classify
new alerts. To ensure the stability of the system over time, a sub-sampling technique is
applied: regularly, the system randomly selects n alerts to be forwarded to the analyst
instead of processing them autonomously. This approach relies on the analyst’s ability
to classify alerts properly and on her availability to operate in real-time (otherwise the
system will not be updated in time); we believe that these (demanding) requirements
can be considered acceptable for an SNIDS (where the analyst can easily inspect both the
signature and network packet(s) that triggered the alert), but it could be difficult to perform
the same analysis with an ANIDS. Benchmarks conducted over the 1999 DARPA data set,
using Snort to generate alerts, show an overall false positive reduction of over 30% (details
on single attack protocols are not given).

The main differences between ALAC and ATLANTIDES are: (a) ALAC does not
consider the outgoing traffic, and (b) ALAC relies heavily on the expertise and the pres-
ence of an analyst (in ATLANTIDES, all the IT specialist has to do is to set the thresholds).

Julisch [61] presents a semi-automatic approach, based on techniques which discover
frequently occurring episodes in a given sequence, for identifying false positives based
on the idea of root cause: an alert root cause is defined as “the reason for which it oc-
curs”. The author observes that in most environments, it is possible to identify a small
number of highly predominant (and persistent) root causes: thereby removing such root
causes drastically reduces the future alert rate. Benchmarks conducted on a log trace from
a commercial SNIDS deployed in a real network show a reduction of 87% of false posi-
tives. No further details are given about the testing condition, network topology or traffic
typology. We cannot compare directly this approach with ATLANTIDES because the data
used by the author is private, nevertheless we can notice that this approach is applicable
only to signature-based systems, while ATLANTIDES is effective with anomaly-based
systems too.

55

Chapter 4. ATLANTIDES: an Architecture for Alert Verification in Network
Intrusion Detection Systems

Analysing output traffic The idea of analysing (and correlating) the output of a (pos-
sible) compromised system has been used before in the context of worm detection.

Gu et al. [53] scan the output traffic for specific port numbers. When an anomaly
has been detected in the incoming traffic directed to a certain destination service port,
their system starts monitoring the output traffic to check whether the host tries to contact
other systems using the same destination service port: if this is the case then the system
is probably infected by a worm. Wang et al. [119] proceed in a similar way, comparing
outgoing to incoming traffic, looking for similarities: when an anomaly has been detected
in the incoming traffic, the anomalous traffic is cached and compared to subsequent out-
going traffic (to detect polymorphic worms). A successful match indicates that the host
has been infected and that the worm is trying to replicate itself, infecting other hosts. Any
other kind of attack will not be handled by the system. In contrast, our solution presents
a general architecture to carry out a complete anomaly detection on the output to reduce
false positives of any NIDS placed on the input channel. Indeed we have shown that our
architecture works well in combination with both a signature and an anomaly-based input
NIDS.

4.5 Conclusion
We present ATLANTIDES, a system for automatic alert verification exploiting in a

structured way the detection of anomalies in the output traffic of a system. ATLANTIDES
can be used to reduce false positives both in signature- and anomaly-based NIDSs.

The core of ATLANTIDES consists of an output anomaly detector (OAD), a modified
version of the POSEIDON core, which compares output traffic with a model it has created
during the training phase. To reduce false positives on the input NIDS (be it signature-
or anomaly-based) monitoring the incoming traffic, ATLANTIDES checks if the commu-
nication raising an alert in the input NIDS actually produces an anomaly in the outgoing
traffic too. In this case (or in the case no output is generated), the alert is forwarded to the
IT specialist, otherwise it is discarded. The fact that the OAD is anomaly-based (rather
than signature-based) allows it to adapt to the specific network environment/service, and
to work in an unsupervised way (at least, after the setup). Anomaly-based systems typi-
cally use a distance function and a threshold to discern anomalous from licit traffic. We
introduce a simple heuristic to set the ATLANTIDES threshold in an automatic, though
effective, way, to further ease the management for IT security specialists (which can in
case adjust the threshold value). Benchmarks on a private data set and on the DARPA
1999 data set show that ATLANTIDES reduces false positives between 50% and 100%
in most of the cases, without introducing any extra false negative, thereby improving the
usability by reducing the work burden for users, and easing the NIDS management.

In the following chapter, we describe the internals of Sphinx, a web- anomaly-based
intrusion detection system. Sphinx, unlikely POSEIDON (and ATLANTIDES), analyses
specific application layer data, i.e., the HTTP protocol. By doing so, Sphinx improves the
detection and false alert rates achieved by POSEIDON.

56

Chapter 5
Boosting Web Intrusion Detection
Systems by Inferring Regular
Languages∗

In the last decade, the Internet has quickly changed from a static repository of in-
formation into a practically unlimited on-demand content generator and service provider.
This evolution is mainly due to the increasing success of so-called web applications (later
re-branded web services, to include a wider range of services). Web applications make it
possible for users to access diverse services from a single web browser, thereby eliminat-
ing reliance on tailored client software.

Although ubiquitous, web applications often lack the protection level one expects to
find in applications that deal with valuable data: as a result, an attacker intent on acquiring
information such as credit card or bank details will often target a web application. Web ap-
plications are affected by a number of security issues, primarily due to a lack of expertise
in the programming of secure applications. To make things worse, a web application is
typically built upon multiple technologies from different sources (such as the open-source
community), making it difficult to assess the resulting code quality. Other factors affect-
ing the (in)security of a web application are its size, complexity and extensibility. Even
with high quality components, the security of a web application can be compromised if
the interactions between those components are not properly designed and implemented,
or an additional component is added at a later stage without due consideration (e.g., a
vulnerable web application could grant an attacker the control of another system which
communicates with it.)

An analysis of the Common Vulnerabilities and Exposures repository [147] conducted

∗This chapter is a minor revision of the paper with the same title published in the Proceedings
of On the Move to Meaningful Internet Systems Confederated International Conferences (OTM
’08), volume 5332 of LNCS, pages 938 - 955, Springer, 2008.

57

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

by Robertson et al. [106] shows that web-related security flaws account for more than 25%
of the total number of reported vulnerabilities from year 1999 to 2005 (this analysis does
not take into account vulnerabilities discovered in web applications developed internally
by companies.) The Symantec 2008 Internet Security Threat Report [144] states that most
of the easily exploitable vulnerabilities (those requiring little knowledge and effort on the
attacker side) are related to web applications, in particular SQL Injection and Cross-site
Scripting attacks. These statistics show that web applications have become the Achilles’
heel in system and network security.

Contribution We present a new approach for anomaly detection devised to detect
data-flow attacks to web applications (attacks against the work flow [19, 36] are not taken
into consideration) and we introduce Sphinx, an ABS based on it. We exploit the fact that,
usually, most of the parameters in HTTP requests present some sort of regularities: by
considering those regularities, we divide parameters into “regular” and “irregular” (whose
content is highly variable) ones; we argue that, for “regular” parameters, it is possible to
exploit their regularities to devise more accurate detection models. We substantiate this
with a number of contributions:

• We introduce the concept of “positive signatures”, to carry out anomaly-detection
on the “regular” parameters. We first infer human-readable regular expressions
by analysing the parameter content, then we generate positive signatures matching
normal inputs.

• We build a system, Sphinx, that implements our algorithm to infer regular expres-
sions automatically and to generate positive signatures; positive signatures are later
used by Sphinx to build automaton-based detection models to detect anomalies in
the corresponding “regular” parameters. For the parameters we call “irregular”,
Sphinx analyses their content using an adapted version of our NIDS POSEIDON
(as it would not be “convenient” to generate a positive signature).

• We extensively benchmark our system against state-of-the-art IDSs such as We-
bAnomaly [73], Anagram [120] and POSEIDON.

We denote a generated signature as a “positive signature”, following the idea that
it is as flexible as a signature used by an SBS but matches positive inputs (in contrast
with an usual signature used to match malicious inputs). Differently from mathematical
and statistical models, a positive signature does not rely on any data frequency/presence
observation or threshold. As shown by our benchmarks, positive signatures successfully
detect attacks with a low false positive rate for “regular” parameters. Positive signatures
aim to improve the usability of the detection engine as well, as users can later modify and
improve any positive signatures (e.g., to eliminate some noisy traffic, or to include a licit
input that was not observed during the inference).

Our new approach merges the ability of detecting new attacks without prior knowl-
edge (a common feature of an ABS) with the possibility of easily modifying/customizing
the behaviour of part of the detection engine (a common feature of an SBS).

58

5.1. Detecting Data-flow Attacks to Web Applications

Sphinx works with any web application, protecting a custom-developed (or close-
source) web application as well. By working in an automatic way, Sphinx requires little
security knowledge from system administrators, however expert users can easily review
regular expressions and make modifications.

We perform thorough benchmarks using three different data sets: the benchmarks
show that Sphinx performs better than state-of-the-art ABSs both in terms of detection and
false positive rates as well as presenting a better learning curve than competing systems.

5.1 Detecting Data-flow Attacks to Web Applications
Let us describe how a web application handles user inputs. A web application gen-

erates an output in response to a user request, which is a string containing a number of
parameter names and their respective parameter values (for the sake of simplicity we
can disregard parameter-less HTTP requests, as attackers cannot inject attack payloads.)
RFC 2616 [49] defines the structure and the syntax of a request with parameters (see
Figure 5.1).

Figure 5.1: A typical HTTP (GET) request with parameters.

We can discard the request version and – for the sake of exposition – the method,
since it is just a matter of implementation and our approach works with both GET and
POST requests. Of interest to us is the presence of a path, a number of parameter names
and of their respective values (in Figure 5.1 the parameter names are “name”, “file” and
“sid” and their respective values are “New”, “Article” and “25”). The set of parameters is
finite. A value can be any string, though not all of the strings will be accepted. Since no
type is defined, the semantics of each parameter is implicitly defined within the context
of the web application and such parameters are usually used in a consistent manner (i.e.,
their syntax is fixed). In the sequel, we refer to the natural projection function: given an
input i = path?p1 = v1&p2 = v2& . . .&pn = vn, we define pn(i) = vn as the function
extracting the value of parameter pn from input i.

5.1.1 Exploiting Regularities
Our claim is that, in the context of web applications, it is possible to exploit the

regularities which are not present in other settings to define and build MA based on the
inference of regular automata, which leads to the definition of an IDS that is more effective
(yet simpler) than state-of-the-art systems.

59

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

Definition 13 A Sphinx automaton is a mapping from strings on a given alphabet to the
set {yes, no} such as α : Strings → {yes, no}; the language it accepts corresponds to
{s ∈ Strings | α(s) = yes}. Given a finite set of strings I it is easy to construct αI , the
automaton which recognizes exactly I .

Commonly, an ABS builds (and uses) a single modelM to analyse data. Our proposal
takes advantage of the fact that requests to any web application present a fixed syntax,
consisting of a sequence of parameter = value pairs, and instead of building a single
model to analyse the input, it builds an ad hoc model Mn for each parameter pn (in
practice, we create a separate model for many – not all – parameters.) As already observed
by Kruegel and Vigna in [72], this allows to create a more faithful model of the application
input. The idea is that of defining MA implicitly by electing that i ∈ MA iff for each
parameter n we have that pn(i) ∈Mn (or that pn(i) is empty).

5.1.2 Regular and Irregular Parameters

So we first divide the parameters in two groups: the regular parameters and the ir-
regular parameters. The core of our idea is that for the regular parameters it is better
to define Mn as a regular language rather than using state-of-the-art anomaly-based sys-
tems. By “better” we mean that this method yields (a) lower false positive rates, (b) same
(or higher) detection rates, and (c) a shorter learning phase. We support our thesis by
presenting an algorithm realizing this.

For each regular parameter, we build a model using a combination of abstraction
and regular expression inference functions that we are going to explain in the following
section: we call this the regular-text methodology, following the intuition that we can
build a model for a parameter that is usually filled by data with a well-defined format
(e.g., integer numbers, dates, user session cookies, etc). For the irregular parameters
we use classical anomaly-based techniques, i.e., n-gram analysis (see Section 3.1.2): we
call this the raw-data methodology, since it is meant to be more suitable for building the
model of parameters containing irregular data (e.g., pieces of blogs or emails, images,
binary data etc).

5.2 Sphinx Detection Engine

To substantiate our claims, that it is possible to exploit the regularities in HTTP re-
quests to define a more effective IDS, we present Sphinx: an anomaly-based IDS specif-
ically tailored to detect attacks to a web application data flows. Let us see how it works.
Sphinx needs to builds its detection models, for both regular and irregular parameters: we
discuss each in turn.

60

5.2. Sphinx Detection Engine

5.2.1 Building the Model

We first outline how we build the model MA of the application given a training set
DS; DS is a set of inputs (i.e., HTTP requests), which we assume does not contain
fragments of attacks. Typically, DS is obtained by making a dump of the application
input traffic during a given time interval. Then, an off-line cleaning step follows (i.e., the
malicious traffic is removed) using a combination of signature-based intrusion-detection
techniques and manual inspections (see Section 2.3.3).

During the first part of the training, we discover the set of parameters used by the web
application: DS is scanned a first time and the parameters {p1, . . . , pn} are extracted and
stored. We call DSn = {pn(i) | i ∈ DS} the training set for the parameter pn (i.e., the
projection of DS on the parameter pn).

In the second step we divide the parameters into two classes: the regular parameters
(for which we use the new anomaly detection algorithms based on regular expressions)
and the irregular parameters. In practice, to decide whether a parameter is “regular”, in
the sequel we use a simple a-priori syntactic check: if at least the 10% of the samples in
DSn contains occurrences of more than 5 distinct non-alphanumeric characters, we say
that pn is an irregular parameter, otherwise it is a regular one. This criterion for separat-
ing (or, better, defining) the regular parameters from the irregular ones appears arbitrary.
However, our analysis shows that it gives good results (see Table 5.7 in Section 5.3).
We impose a minimum amount of samples (10%) to present more than 5 distinct non-
alphanumeric characters to prevent the Sphinx engine from classifying a parameter as
“irregular” because of a few anomalous samples. An attacker could in fact exploit this
to force the system to classify any parameter as “irregular”, by just carefully crafting a
single HTTP request.

Figure 5.2: Sphinx internals.

In the last step of the training phase we build a model Mn for each of the regular
parameters pn, using the training set DSn. The irregular parameters, in turn, are again
grouped together and for them we build a unique model: we could also build a single
model per irregular parameter, but this would slow down the learning phase, which is
already one of the weak spots of classical anomaly detection techniques.

61

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

5.2.2 The Regular-text Methodology

This represents the most innovative aspect of our contribution. The regular-text method-
ology is designed to build a simple model of the “normal” input of the regular parameters.
This model is represented by a regular expression and anomalies are detected by the de-
rived finite automaton. We illustrate this methodology by presenting two algorithms real-
izing it: the first algorithm is called the simple regular expression generator (SREG) and
it is meant to illustrate the fundamental principles behind the construction of such regular
language; the second algorithm is called complex regular expression generator (CREG),
and can be regarded as a further development of the first one. Here we should mention
that standard algorithms to infer regular expressions (see [48] for a detailed overview)
cannot be used for intrusion detection because they infer an expression matching exactly
the strings in the training data set only, while we need to match an abstraction of it.

5.2.2.1 Simple Regular Expression Generator

Here we introduce our first algorithm. We have a training set DSn (the training set
for parameter n) and we want to build a model Mn of the parameter itself, and a decision
procedure to determine for a given input i whether pn(i) is in Mn or not.

Our first algorithm to generate Mn is based on applying two abstractions to DSn.
The first abstraction function, abs1, is devised to abstract all letters and all digits (other
symbols are left untouched), and works as follows:

abs1(c1 . . . cn) = abs1(c1), . . . , abs1(cn)

abs1(ci) =


“a”, ci ∈ {“a”, . . . , “Z”}
“1”, ci ∈ {“0”, . . . , “9”}
ci otherwise

Thus abs1 abstracts alphanumerical characters while leaving non-alphanumerical sym-
bols untouched (for the reasons we clarified in Section 5.1.1). The reason for this choice
is that, in the context of web applications, the presence of “unusual” symbols, or a con-
catenation of them, could indicate the presence of attack payloads (Robertson et al. [106]
employ a similar approach).

The second abstraction we use is actually a contraction:

abs2(c1 . . . cn) =


abs2(c2 . . . cn) if c1 = c2 = c3 = “a” or c1 = c2 = c3 = “1”
c1c1 abs2(c3 . . . cn) if c1 = c2 6= c3 and c1 = “a” or c1 = “1”
c1 abs2(c2 . . . cn) if c1 6= c2 or c1 = c2 and c1 6= “a” and c1 6= “1”

Intuitively, abs2 collapses all strings of letters (resp. digits) of length not less than
two onto strings of letters (resp. digits) of length two. Again, symbols are left untouched,

62

5.2. Sphinx Detection Engine

Input abs1(i) abs2(i
′)

11/12/2007 11/11/1111 11/11/11
addUser aaaaaaa aa

C794311F-FC92-47DE-9958 a111111a-aa11-11aa-1111 a11a-aa11-11aa-11

Table 5.1: Some examples of application of abstractions abs1 and abs2 on different inputs.

as they may indicate the presence of an attack. Table 5.1 provides some examples of
application of abs1 and abs2 on different input strings.

These two abstraction algorithms are enough to define our first model, only one de-
tail is still missing. If the samples in DSn have maximum length say l, then we want
our model Mn to contain strings of maximum length 2l: an input which is much longer
than the samples observed in the training set is considered anomalous. In fact, the at-
tacker could encode the attack payload in order to avoid any non-alphanumerical symbol
and evade detection (e.g., using URL, hexadecimal or Unicode encoding). However, the
resulting payload is likely to be much longer than the original payload. During our exper-
iments we have observed that by setting the maximum length value to 2l we were able to
detect encoded attack payloads.

Definition 14 Let DSn be a training set. Let l = max{|x| | x ∈ DSn}. We define the
simple regular-text model of DSn to be

M simple
n = {x | |x| ≤ 2l ∧ ∃y ∈ DSn abs2(abs1(x)) = abs2(abs1(y))}

During the detection phase, if pn(i) 6∈ M simple
n then an alert is raised. The de-

cision procedure for checking whether i ∈ M simple
n is given by the finite automaton

α
Msimple

n
that recognizes M simple

n . α
Msimple

n
is implemented using a (unbalanced) tree

data-structure, therefore adding a new node (i.e., a previously unseen character) costs
O(l), where l is the length of the longest observed input. The complexity of building the
tree for n inputs is therefore O(n · l). The decision procedure to check, given an input i,
if pn(i) ∈ Mn has complexity O(l). To simplify things, we can represent this automaton
as a regular expression.

Training sets abs2(abs1(i)) SREG
01/01/1970

30/4/85
9/7/1946

11/11/11
11/1/11
1/1/11

1(1/1(1/11|/11)|/1/11)

41E44909-C86E-45EE-8DA1
0F786C5B-940B-4593-B96D
656E0AB4-B221-422F-92AC

11a11-a11a-11aa-1aa1
1a11a1a-11a-11-a11a

111a1aa1-a11-11a-11aa

1(1(a11-a11a-11aa-1aa1|
1a1aa1-a11-11a-11aa)|
a11a1a-11a-11-a11a)

Table 5.2: Examples of how SREG works on different input sets.

63

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

5.2.2.2 Complex Regular Expression Generator

The simple SREG algorithm is effective for illustrating how regular expressions can
be useful in the context of anomaly detection and how they can be used to detect anomalies
in regular parameters. Nevertheless we can improve on SREG in terms of FPs and FNs
by using an (albeit more complex) algorithm, which generates a different, more complex
model.

The algorithm goes through two different phases. In the first phase each DSn is
partitioned in groups with common (shared) prefixes or suffixes (we require at least 3
shared characters, to avoid the generation of useless regular expressions.)

In the second phase, the algorithm generates a regular expression for each group as
follows. First, it applies abstractions abs1 and abs2 on each stored body (we call the body
the part of the input obtained by removing the common prefix or suffix from it: prefixes
and suffixes are handled later.) Secondly, it starts to search for common symbol patterns
inside bodies. Given a string s, we define the symbol pattern of s as the string obtained
by removing all alphanumerical characters from s.

As bodies could contain different symbol patterns, non-trivial patterns (i.e., patterns
of length greater than one) are collected and the pattern matching the highest number
of bodies is selected. If some bodies do not match the selected pattern, then the same
procedure is repeated on the remaining bodies set till no more non-trivial patterns can be
found.

For each non-trivial symbol pattern discovered during the previous step, the algorithm
splits each body into sub-strings according to the symbol pattern (e.g., s = s′ − s′′ − s′′′
is split in {s′, s′′, s′′′} w.r.t. the pattern). Corresponding sub-strings are grouped to-
gether (e.g., having strings s1,s2 and s3 the algorithm creates g1 = {s′1, s′2, s′3}, g2 =
{s′′1, s′′2, s′′3} and g3 = {s′′′1 , s′′′2 , s′′′3 }) and a regular expression is generated for each
group. This regular expression is then modified according to some heuristics to match
also similar strings. Regular expressions are then merged with the corresponding sym-
bol pattern, and any previously found prefix or suffix is eventually added (e.g., re =
(prefix)reg1 − reg2 − reg3). Table 5.3 depicts an example of the different steps of
CREG.

Training set Symbol Shared Intermediate Resulting
Pattern Pattern Regular Expression Regular Expression

al.ias@atwork.com [. @ .]
[@ .]

(a+ [.])+@(a+).(a+)
((a|1)+ [. |])+@(a+ [-])+.(a+)3l 1t3@hack.it [@ .] ((a|1)+ [])+@(a+).(a+)

info@dom-ain.org [@ - .] (a+)@(a+ [-])+.(a+)

Table 5.3: Examples of pattern selection, generated regular expressions for samples and
the resulting one.

Finally, for bodies which do not share any non-trivial symbol pattern with the other
members of the group, a dedicated general regular expression is generated. Table 5.4
shows some examples of generated regular expressions for different sets of strings.

64

5.2. Sphinx Detection Engine

Training sets Pattern Regular
Expression

01/01/1970
30/4/85

9/7/1946
[/ / /] (1+/1+/1+)

addUser
deleteUser
viewUser

N/A (a+)User

41E44909 C86E 45EE 8DA1
0F786C5B-940B-4593-B96D
656E0AB4-B221 422F-92AC

Only trivial
patterns⇒ general
regular expression

((a|1)+[-|])+

Table 5.4: Examples of how CREG works on different input sets.

Given the resulting regular expression (i.e., the positive signature), we build a finite
automaton accepting the language it represents. The automaton is built in such a way that
it accepts (as in the case of SREG) only strings of length less than 2l. In the detection
phase, if an input is not accepted by the automaton, an alert is raised.

5.2.2.3 Effectiveness of Positive Signatures

Because of the novelty of our approach, let us see some concrete examples regarding
the potential of positive signatures.

Think of a signature such as “id=1+”, accepting numeric values: the parameter id
is virtually protected from any data-flow attack, since only digits are accepted. When
we consider more complex signatures, such as “email=((a|1)+ [. |])+@(a+ [-])+.(a+)”
(extracted from Table 5.3), common attack payloads would be detected by the automaton
derived from the regular expression, as they require the injection of different symbol sets
and in different orders.

One could argue that it could be sufficient (and simpler) to detect the presence of
typical attack symbols (having them classified and categorized) or, better, the presence of
a symbol set specific to an attack (e.g., “ ’ ”,“ , ” and “ - ” for a SQL Injection). However,
a certain symbol set is not said to be harmful per se, but it must be somehow related to the
context: in fact, the symbol “ , ” used in SQL Injection attacks, can also be found in some
representations of real numbers. A positive signature, in contrast with usual state-of-the-
art anomaly detection approaches, provides a sort of context for symbols, thus enhancing
the detection of anomalies.

For instance, by April 2009, the CVE database contains more than 3000 SQL Injection
and more than 4000 Cross-site Scripting attacks but only less than 250 path traversal and
less than 400 buffer overflow attacks (out of a total of more than 30000 entries). Most of
the SQL Injection attacks happen to exploit “regular” parameters (integer-based), where

65

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

the input is used inside a “SELECT” statement and the attacker can easily add a crafted
“UNION SELECT” statement to extract additional information such as user names and
their passwords. The same reasoning applies to Cross-site Scripting attacks. Positive
signatures can significantly enhance the detection of these attacks.

5.2.3 The Raw-data Methodology

The raw-data methodology is used to handle the “irregular” parameters. For them,
using regular automata to detect anomalies is not a good idea: the input is so heteroge-
neous that any automaton devised to recognize a “reasonable” super set of the training set
would probably accept any input. Indeed, for this kind of heterogeneous parameters we
can better use a classical anomaly detection engine, based on statistical content analysis
(e.g., n-gram analysis). In the present embodiment of Sphinx we use our own POSEIDON
(which performs well in our benchmarks, see Section 3.2.1), but we could have used any
other payload-based ANIDS.

5.2.4 Using the Model

When the training phase is completed, Sphinx switches to detection mode. As a
new HTTP request comes, parameters are extracted applying the projections p1, . . . , pn.
Sphinx stores, for each parameter analyzed during the training phase, information regard-
ing the model to use to test its input. For a parameter that was labelled as “regular”, the
corresponding automaton is selected. If it does not accept the input, then an alert is raised.
If the parameter was labelled “irregular”, the content is analyzed using the adapted ver-
sion of POSEIDON (which uses a single model for all of the irregular parameters). If
the content is considered to deviate from the “normal” model, an alert is raised. Sphinx
raises an alert also in the case a parameter has never been analysed before and suddenly
materializes in a HTTP request, since we consider this eventuality as an attempt to exploit
a vulnerability by an attacker.

5.2.4.1 Editing and Customizing Positive Signatures

One of the most criticized disadvantages of an ABS lies in its “black-box” approach
(see Section 2.2.2).

A signature, as a general rule, provides more freedom to customize the detection en-
gine behaviour. The use of positive signatures opens the new possibility of performing a
thorough tuning for an ABS, thereby modifying the detection models of regular parame-
ters. Classical anomaly-based detection systems do not offer this possibility as their mod-
els aggregate collected information, making it difficult (if not impossible) to remove/add
arbitrary portions of data.

Positive signatures allow IT specialists to easily (and quickly) modify or customize
the detection models when there is a need to do so (see Table 5.5), like when (1) some

66

5.3. Benchmarks

Positive Signature Problem Action

id=1+ | (a+ [’|,|-|;])+
The payload of a SQL
Injection attack was

included in the training set

The IT specialist
manually changes

the signature⇒ id=1+

date=1+/1+/1+

A new input (“19-01-1981”)
is observed after the training
phase, thereby increasing the

false positive rate

The IT specialist re-trains
the detection model

with the new input and
the positive signature⇒

date=1+/1+/1+ | 1+-1+-1+

is automatically generated

Table 5.5: Some examples of signature customization.

malicious traffic, that was incorporated in the model during the training phase, has to be
purged (to decrease the false negative rate) and (2) a new (previously unseen) input has to
be added to the model (to decrease the false positive rate).

5.3 Benchmarks
The quality of the data used in benchmarks (and the way it was collected) greatly

influences the number of successfully detected attacks and false alerts: test data should be
representative of the web server(s) to monitor, and the attack test bed should reflect mod-
ern attack vectors. Presently the only (large) public data set for testing intrusion-detection
systems is the DARPA data set, dating back to 1999. Although this data set is still widely
used (since public data sets are scarce), it presents significant shortcomings that make it
unsuitable to test our system: e.g., only four attacks related to web (and most of them tar-
get web server vulnerabilities) are available and traffic typology is outdated (see [85, 87]
for detailed explanations about its limitations). So, to carry out our experiments we col-
lected three different data sets from three different sources: real production web sites that
strongly rely on user parameters to perform their normal activity.

Data set Web Application # of samples
(HTTP requests)

DSA PostNuke ∼460000 (1 month)
DSB (Private) User forum ∼290000 (2 weeks)

DSC
CS department’s web

site (CGI & PHP scripts) ∼85000 (2 weeks)

Table 5.6: Collected data sets: code name for tests, source and number of samples.

The first data set is a deployment of the widely-known content management system
PostNuke. The second comes from a (closed-source) user forum web application, and

67

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

it contains user messages sent to the forum, which present a variable and heterogeneous
content. The third data set has been collected from the web server of our department,
where PHP and CGI scripts are mainly used. Each data set contains both GET and POST
requests: the Sphinx engine can interpret the body of POST requests as well, since only
the request syntax changes from a GET request, but the content, in case of regular pa-
rameters, looks similar. In case of encoded content (for instance, a white space is usually
encoded as the hexadecimal value “%20”), the content is first decoded by Sphinx engine
and then processed.

We collected a number of samples sufficient to perform extensive training and testing
(never less than two weeks of traffic and in one case a month, see also Table 5.6). Data
used for training has been made attack-free by using Snort to remove well-known attacks
and by manually inspecting to purge remaining noise.

Determining a criterion for regular and irregular parameters In Section 5.2.1
we introduce the criterion, based on the number of unique symbols in the content of each
parameter, used by the detection engine to determine when a parameter is considered
either regular (validated with a positive signature) or irregular (validated with an adapted
version of the detection engine of POSEIDON).

Intuitively, we want to have as many regular parameters as possible, because a posi-
tive signature offers a higher degree of usability for users than the POSEIDON detection
engine. Hence we should select a high value of unique symbols that are allowed in the
parameter content. However, the higher the number of allowed unique symbols, the less
precise the generated positive signature is (and the higher the chance to consider an attack
as licit traffic, generating a false negative). Parameters which usually carry large portions
of data are likely to have a high number of unique symbols (think of a blog message with
punctuation marks).

So, we chose the value of unique symbols allowed as follows. For each data set, we
first counted how many unique symbols each parameter contains. Because attacks usually
contain a good deal of symbols, we then manually inspected the content of parameters
with at least 3 unique symbols, to verify that the symbol set for those parameters does
not overlap with any attack symbol set. The attack symbol sets are generated using attack
test beds which contain SQL Injection, Cross-site Scripting and Path Traversal attacks,

unique symbols
1 2 3 4 5 6 7 or more

DSA 39 (N) 45 (N) 47 (N) 50 (N) 55 (N) 61 (N) 62 (Y)
DSB 51 (N) 58 (N) 60 (N) 75 (N) 78 (N) 80 (Y) 84 (Y)
DSC 321 (N) 325 (N) 330 (N) 332 (N) 334 (N) 339 (Y) 341 (Y)

Table 5.7: Number of regular parameters when allowing a certain number of unique sym-
bols. In brackets we report whether an overlap between any parameter symbol set and any
attack symbol set occurs (Y) or not (N).

68

5.3. Benchmarks

and contain at least 3 unique symbols). Our analysis indicates that by allowing up to 5
unique symbols in the parameter symbol sets there are no overlaps with attack symbol
sets. Table 5.7 reports our findings.

Users can adjust the value for the unique symbols in regular parameters to gener-
ate more precise positive signatures, and therefore reducing the chance of missing a real
attack.

5.3.1 Comparative Benchmarks

To test the effectiveness of Sphinx, we compare it to three state-of-the-art systems,
which have been either developed specifically to detect web attacks or have been exten-
sively tested with web traffic.

First, WebAnomaly (Kruegel et al. [72]) combines five different detection models,
namely attribute length, character distribution, structural inference, attribute presence and
order of appearance, to analyze HTTP request parameters. Second, Anagram (Wang et
al. [120]) uses a Bloom filter to store any n-gram (i.e., a sequence of bytes of a given
length) observed during a training phase, without counting the occurrences of n-grams.
During the detection phase, Anagram flags as anomalous a succession of previously un-
seen n-grams. Although not specifically designed for web applications, Anagram has been
extensively tested with logs captured from HTTP servers, achieving excellent results. We
set the parameters accordingly to authors’ suggestions to achieve the best detection and
false positive rates. Third, our own POSEIDON, the system we adapted to handle raw-text
parameters in Sphinx. POSEIDON, during our previous experiments (see Section 3.2.1),
showed a high detection rate combined with a low false positive rate in tests related to
web traffic, outperforming the leading competitor.

We divide tests into two phases. We compare the different engines first by considering
only the “regular” parameters. Later, we consider full HTTP requests (with both “regular”
and “irregular” parameters).

The goal our tests is twofold. Next to the effectiveness of Sphinx, we are also inter-
ested in testing the learning rate: any anomaly-based algorithm needs to be trained with
a certain amount of data before it is able to correctly flag attacks without generating a
massive flow of false alerts. Intuitively, the longer the training phase is, the better the IDS
should perform. But an anomaly detection algorithm that requires a shorter training phase
is easier to deploy than an algorithm that requires a longer training phase.

5.3.2 Testing the Regular-expression Engine

In this first test, we compare our CREG algorithm to WebAnomaly, Anagram and
POSEIDON using training sets of increasing size with “regular” requests only (requests
where parameters classified as “raw-data” have been previously removed, leaving a total
of 55 regular parameters) from DSA. This test aims to demonstrate the effectiveness of
our approach over previous methods when analysing regular parameters. We use training

69

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

sets of increasing size to measure the learning rate and to simulate a training phase as it
could take place in a real environment, when a system is not always trained thoroughly.
As an attack test bed, we use the same set of attacks used to determine the criterion for
regular and irregular parameters, and added buffer overflow payloads. We have added also
attack mutations, generated using the Sploit framework [116], to reproduce the behaviour
of an attacker attempting to evade signature-based systems. The attack test bed contains
then 20 attacks in total now. Table 5.8 reports results for tests with “regular” requests.

#training samples CREG WebAnomaly Anagram POSEIDON

5000
Attacks 20/20 18/20 20/20 20/20

FPs 1062 1766 144783 1461

10000
Attacks 20/20 16/20 20/20 20/20

FPs 1045 1529 133023 1387

20000
Attacks 20/20 16/20 20/20 20/20

FPs 43 177 121484 1306

50000
Attacks 20/20 14/20 20/20 20/20

FPs 16 97 100705 1251

Table 5.8: Results for CREG and comparative algorithms on “regular” requests only ex-
tracted from DSA. CREG outperforms in terms of both detection (all 20 possible attacks
detected) and false positive rates competitors, due to its better context-aware approach.
We note that with a relatively small training set (20000 samples), CREG already raises
fewer false positives than the runner-up competitor (WebAnomaly) while detecting any
attack.

Our tests show that with a rather small training set (20000 requests, originally collected
in less than two days), CREG generates 43 false positives (∼0,009%), less than 2 alerts
per day. The “sudden” decrease in FPs shown by CREG (and Webanomaly) when we
train it with at least 20000 requests is due to the fact that, with less than 20000 train-
ing samples, some parameters are not analysed during training (i.e., some URLs have
not been accessed), therefore no model is created for them and by default this event is
considered malicious. One surprise is the high number of false positives shown by Ana-
gram [57, 120]. Anagram raises a high number of false positives on specific fields whose
content looks pseudo-random, which are common in web applications. Consider for ex-
ample the following request parameter sid=0c8026e78ef85806b67a963ce58ba823 (it is
a user session ID automatically added by PostNuke in each URL link), this value being
randomly generated as a new user comes: such a string probably contains a number of
n-grams which were not observed during the training phase, therefore Anagram is likely
to flag any session ID as anomalous. Also Song et al. [110] point out such drawback. On
the other hand, CREG exploits regularities in inputs, by extracting the syntax of the pa-
rameter content (e.g., the regular expression for sid is (a+|d+)+), and easily recognizes
similar values in the future. WebAnomaly shows (unexpectedly, at least in theory) a worse

70

5.3. Benchmarks

detection rate as the training set samples increase. This is due to the fact that the content
of new samples is similar to some attack payloads (but contains different symbols), and
the system is not able to discern malicious traffic because of its statistical model.

5.3.3 Testing Sphinx on the Complete Input

We show the results of the second test which uses the complete input of the web ap-
plication (and not only the regular parameters). We use the two data sets DSB and DSC :
DSB contains 78 regular and 10 irregular parameters; DSC respectively 334 and 10. We
proceed as before, using different training sets with increasing numbers of samples. To
test our system, we have used the attack database presented in [57] which has already
been used to assess several intrusion-detection systems for web attacks. We adapted the
original attack database and added the same attack set used in our previous test session.
We found this necessary because [57] contains some attacks to the platforms (e.g., a cer-
tain web server vulnerability in parsing inputs) rather than to the web applications them-
selves (e.g., SQL Injection attacks are missing). Furthermore, we had to exclude some
attacks since they target web server vulnerabilities by injecting the attack payload inside
the HTTP headers: although Sphinx could be easily adapted to process header fields, our
logs do not always contain a HTTP header information. In total, our attack bed contains
80 vectors, including the 20 attacks previously used to test DSA (adapted to target the
new data set).

training Sphinx Web Anagram POSEIDON
samples FPs RT FPs RD Anomaly

5000
Attacks 80/80 67/80 80/80 80/80

FPs 162 1955 2593 90301 3478

10000
Attacks 80/80 67/80 80/80 80/80

FPs 59 141 587 80302 643

20000
Attacks 80/80 53/80 80/80 80/80

FPs 43 136 451 71029 572

50000
Attacks 80/80 47/80 80/80 80/80

FPs 29 127 319 61130 433

Table 5.9: Results for Sphinx and comparative algorithms on full requests from DSB: we
report separate false positive rates for Sphinx (RT stands for “regular-text” models and
RD for “raw-data” model). Sphinx outperforms competitors in terms of detected attacks
and false positive rate. By looking at the FP value of Sphinx reported in column “RD” and
at the FP value reported for POSEIDON (the RD model is the same used by POSEIDON
), we note that using two different approaches to detect anomalies is the key to improve
accuracy.

71

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

training Sphinx Web Anagram POSEIDON
samples FPs RT FPs RD Anomaly

5000
Attacks 80/80 78/80 80/80 80/80

FPs 36 238 607 16779 998

10000
Attacks 80/80 77/80 80/80 80/80

FPs 24 109 515 13307 654

20000
Attacks 80/80 49/80 80/80 80/80

FPs 10 98 459 7417 593

50000
Attacks 80/80 46/80 80/80 80/80

FPs 3 47 338 4630 404

Table 5.10: Results for Sphinx and comparative algorithms on full requests from DSC :
we report detailed false positive rates for Sphinx (RT stands for “regular-text” models and
RD for “raw-data” model). Sphinx outperforms competitors in terms of detected attacks
and false positive rate.

The tests show that the presence of irregular parameters significantly influences the
false positive rate of Sphinx. We need an extensive training to achieve a rate of 10 false
positives per day: this is not surprising, since we observed a similar behaviour during
previous tests (see [1, 4]).

5.4 Signature Generation for Signature-based Sys-
tems

Commonly the expression “signature generation” refers to the automatic generation
of signatures, for an SBS, once an attack has been detected by an ABS. This capability has
been extensively investigated recently [65, 68, 91, 120], but results have been limited in
their scope. Chung and Mok [31, 32] demonstrate that it is possible to force the generation
of signatures that match normal traffic, thereby generating an impressive number of false
alerts. Rather than generating a signature for an attack, one should generate a signature
for a vulnerability, as attackers can easily craft a new (undetectable) attack payload, yet
exploiting the same vulnerability.

Sphinx uses regular expressions inferred from HTTP request parameters to model the
normal content of regular parameters: those regular expressions can be exported to an
SBS, making it possible to configure the IDS automatically. In this way, we completely
reverse the usual signature-based approach, thereby enforcing the detection (at least, for
regular parameters) by defining specifically what is considered normal, rather than what
is considered malicious. This has a great impact on a SBS: with signatures exported from
Sphinx inferred regular expressions, regular parameters are virtually protected by any
attack with just one signature.

72

5.4. Signature Generation for Signature-based Systems

Among the freely available SBSs, three are widely used: Snort, Bro [100] and ModSe-
curity [128]. We chose to export the inferred regular expressions to ModSecurity format
because (1) it is a widely-deployed web application firewall, and (2) a good deal of its
signatures are based on regular expressions. It basically works as Snort, but processes in-
formation at an higher OSI level. In fact, being an additional module for the Apache web
server, it has the advantage of processing HTTP requests after the IP and TCP data have
been reassembled (immune to common IP and TCP evasion attacks [104]) and decrypted
(no need to provide SSL keys) by the web server.

The reason why ModSecurity signatures are mainly based on regular expressions (and
a lot of “facilities” have been provided by developers to work with them) is that they can
take advantage of the HTTP context and they aim to detect typical attack traces (such
as “select from” for a SQL Injection) in requests, rather than matching a straight pattern
(unlike Snort). This approach is an attempt to decrease the false negative/positives rates,
by introducing a kind of abstraction. Although these signatures heavily based on regular
expressions usually perform better than “old” signatures (more attack variations can be
detected with a single signature), the approach presents the usual limits of signature-based
solutions: the attack payload must be known in advance.

This is where Sphinx becomes particularly powerful in combination with ModSecu-
rity. ModSecurity can be configured with the exported regular expressions inferred by
Sphinx (along with its standard set of signatures) to validate regular parameters in HTTP
requests. Below, we compare a standard signature used by ModSecurity to detect SQL
Injections attacks to a signature exported by Sphinx (using ModSecurity format) for two
regular parameters. Sphinx signatures protect those parameters from any currently known
attack. For the sake of exposition, we report only part (less than a half) of the original
signature of ModSecurity.

ModSecurity signature

SecRule REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS|
!REQUEST_HEADERS:Referer "(?:\b(?:(?:s(?:elect\b(?:.{1,100}
?\b(?:(?:length|count|top)\b.{1,100}?\bfrom|from\b.{1,100}?
\bwhere)|.*?\b(?:d(?:ump\b.*\bfrom|ata_type)|(?:to_(?:numbe|
cha)|inst)r))|p_(?:(?:addextendedpro|sqlexe)c|(?:oacreat|
prepar)e|execute(?:sql)?|makewebtask)|ql_(?:longvarchar|...

The signature of ModSecurity cannot be designed for a specific resource, because
each deployment site could be different. Hence, in the first part of the signature, the detec-
tion engine is instructed to scan any entry of the HTTP request (e.g., REQUEST HEADERS
and REQUEST FILENAME), and not the URL only. The following part of the signature
search for well-known traces of SQL Injection attacks (in this case, to gain control of a
Microsoft SQL Server DBMS). The signature cannot specific which parameters could be
exploited, therefore the detection engine has to go trough the whole request.

73

Chapter 5. Boosting Web Intrusion Detection Systems by Inferring Regular
Languages

Sphinx signature

SecRule REQUEST_FILENAME "/index.php" "chain,log,deny,status:
403,phase:2"
SecRule ARGS_NAMES "!ˆ(id|func)$"
SecRule ARGS QUERY_STRING "!ˆ(id=\d+)"
SecRule ARGS QUERY_STRING "!ˆ(func=(?:\a+)User)"

The signature generated by Sphinx for ModSecurity targets a specific resource (i.e.,
the URL “index.php” in the example). Since Sphinx works by analysing each request
parameter singularly, and it can enumerate precisely which parameters the HTTP request
should contain (“id” and “func”), thus detecting any attempt to inject a malicious pay-
load in non-existent parameters (a typical behaviour of automatic scanners, which usually
do not fingerprint the attacked web site). For each of these parameters, Sphinx inserts a
specific regular expression that validates the input (only integer values for the “id” param-
eter). Hence, the engine requires less computational resources, as only one signature is
used per parameter.

Benefits ModSecurity users have several benefits: (1) they do not need to spend time in
ad hoc configurations and updating (as signatures tailored for each regular parameter are
provided and updated by Sphinx), (2) they can easily review generated signatures and pos-
sibly edit them on-the-fly (as signatures are simple human-readable regular expressions),
(3) custom-developed web applications are protected as well, and (4) new (previously
unknown) attacks payloads are detected as well.

5.5 Related Work
Despite the fact that web applications have been widely developed only in the last

half-decade years, the detection of web-based attacks has immediately received consider-
able attention.

Ingham et al. [58] use a deterministic finite automaton (DFA) to build a profile of
legal HTTP requests. It works by tokenizing HTTP request parameters, and storing each
token type and (optionally) its value. Pre-defined heuristic functions are used to validate
and generalize well-known input values (e.g., dates, file types, IP addresses and session
cookies). Each state in the DFA represents an unique token, and the DFA has a transition
between any two states that were seen consecutively (from a chronological point of view)
in the request. A similarity function determines if a request has to be considered anoma-
lous. It reflects the changes (i.e., for each missed token a new transition would have to be
added) that would have to be made to the DFA for it to accept the request. The more the
changes, the more likely the request is anomalous.

Despite its effectiveness, this approach relies on predefined functions which can be
used to analyse only certain (previously known) input types. Furthermore, for some pa-
rameters (e.g., blog messages) it could be difficult to find a good function to validate

74

5.6. Conclusion

the content. Sphinx, on the other hand, is able to learn in an automatic way the syntax
of most of parameter values and uses a content-based anomaly detector for parameters
whose syntax cannot be extracted.

WebAnomaly (Kruegel et al. [73]) analyses HTTP requests and takes significant ad-
vantage of the parameter-oriented URL format common in web applications. The system
applies up to nine different models at the same time to detect possible attacks, namely:
attribute length and character distribution, structural inference, token finder, attribute pres-
ence and order, access frequency, inter-request time delay and invocation order. We have
compared WebAnomaly to Sphinx in our benchmarks.

Jovanovic et al. [60] present a static-analysis tool (called Pixy) for web applications.
The tool detects data flow vulnerabilities by checking how inputs could affect the (in-
tended) behaviour of the web application, leading to an outflow of information. This
approach requires the sources code of the web application to be available.

Finally, we should mention that Almgren et al. [12] and Almgren and Lindqvist [13]
present similar systems which are based on signature-based techniques and either analyse
web server logs ([12]) or are integrated inside the web server itself.

5.6 Conclusion
Sphinx is conceptually simple, and – as our benchmarks show – to detect attacks to

web applications it performs better than competing systems.
The systems we compare Sphinx to are the best currently available and the set of

benchmarks we have carried out (with 3 different data sets) is extensive. Another aspect
we want to stress is that Sphinx presents also a better learning curve than competitors (i.e.,
it needs a lower number of samples to train). This is important in the practical deployment
phase, when changes to the underlying application require that every now and then the
system be retrained (and retraining the system requires cleaning up the training set from
possible attacks, an additional operation which needs to be done – accurately – off-line).

Instead of using solely mathematical and statistical models, Sphinx takes advantage
of the regularities of HTTP request parameters and is able to automatically generate,
for most of the parameters, human-readable regular expressions (we call them “positive
signatures”). This also means that the IT specialist, if needed, can easily inspect and
modify/customize the signatures generated by Sphinx, thereby modifying the behaviour
of the detection engine. This aspect should be seen in the light of the criticisms that is
often addressed to anomaly-based systems: that they are black-boxes which cannot be
tuned by the IT specialists in ways other than modifying, e.g., the alert threshold [70].
Sphinx is – to our knowledge – the first anomaly-detection system which relies heavily
on signatures which can be seen, interpreted, and customized by users, thereby improving
the usability of the system.

75

Chapter 6
Panacea: Automating the
Classification of Attacks for
Anomaly-based Network Intrusion
Detection Systems∗

Today, security teams aim to automate the management of security events, both to op-
timize their workload and to improve the chance of detecting malicious activities. How-
ever, the automation of the security management tasks poses new challenges.

During the years, IDSs have been continuously improved to detect the latest threats.
However, some events that were once considered dangerous have become “not-relevant”
(e.g., port scans). Malicious activities conducted by automatic scanners, BOTnets, and
so-called script-kiddies can generate a large number of security alerts. Although true
positives when detected by an IDS, these kinds of activities cannot normally be considered
a serious threat. Most of them attempt to exploit old vulnerabilities that have already been
fixed. The fact that a remote automatic scanner is attempting to replicate a 5-year old
attack against a now-secure PHP script on a certain web server is no longer important.
As a result, the number of security alerts, consisting of irrelevant true positives and false
positives (which we have already addressed in Chapter 4), has increased over the years.
The most harmful attacks currently consist of several stages. Ning et al. [96] observe that
“most intrusions are not isolated, but related as different stages of attacks, with the early
stages preparing for the later ones”.

A number of techniques to perform alert correlation have been proposed (Cuppens
and Ortalo [38], Debar and Wespi [44], Ning and Xu [99] and Valeur et al. [113]), in
order to detect attacks at an early stage, or lower the false and the non-relevant alert rates.

∗This chapter is a minor revision of the paper with the same title published in the Proceedings
of 12th Symposium on Recent Advances in Intrusion Detection, Springer, 2009 (TO APPEAR).

77

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

Nowadays, several “security information management” (SIM) tools are widely used
by security teams (e.g., the well-known OSSIM [137]). They are used to ease the manage-
ment of the security infrastructure, as they integrate with heterogeneous security systems,
and can perform a number of tasks automatically. Among those tasks, SIM tools automate
the alert filtering and correlation. However, for the tasks to be effective, the attacks that
triggered the alerts must be classified to provide a good deal of information (apart from
the usual IP addresses and TCP ports). In fact, by classifying the attack (e.g., buffer over-
flow, SQL Injection), it is possible to set in a more precise way an action the system has to
execute to handle a certain alert. The alert could (1) trigger automatic countermeasures,
e.g., either because an early attack stage has been detected or because the attack class is
considered to have a great impact on the security. Alternately, the alert (2) could be for-
warded for manual handling or (3) filtered and stored for later analysis (i.e., correlation)
and statistics.

Determining the class of an attack is trivial for an alert generated by an SBS. Each
signature is the result of an analysis of the corresponding attack conducted by experts: the
attack class is manually assigned during the signature development process (i.e., the alert
class is included in the signature). Thus, usually security teams do not need to further
process the alert to assign a class, and they can set precisely a standard action for the
system to execute when such an alert is triggered.

Problem When an ABS raises an alert, it cannot associate the alert with an attack
class. The system detects an anomaly, but it has too little information (typically only
source and destination IP addresses and TCP ports) to determine the attack class. No
automatic or semi-automatic approach is currently available to classify anomaly-based
alerts. Thus, any anomaly-based alert must be manually processed to identify the alert
class, increasing the workload of security teams. A solution to automate the classification
of anomaly-based alerts is to employ some heuristics (e.g., see Robertson et al. [106]) to
analyse the ABS alert for features of well-known attacks. Although this approach could
lead to good results, it totally relies on the manual implementation of the heuristics (which
could be a labour intensive task), and on the expertise of the operator.

The lack of attack classification affects the overall usability of an ABS, because it
makes it difficult (if not impossible) for security teams both to employ alert correlation
techniques and to activate automatic countermeasures for anomaly-based alerts, and in
general to integrate an ABS with a SIM tool.

Contribution We present Panacea, a simple, yet effective, system that uses machine
learning techniques to automatically and systematically classify attacks detected by a
payload-based ABS (and consequently the generated alerts as well). The basic idea is
the following. Attacks that share some common traits, i.e., some byte sequences in their
payloads, are usually in the same class. Thus, by extracting byte sequences from an alert
payload (triggered by a certain attack), we can compare those sequences to previously
collected data with an appropriate algorithm, find the most similar alert payload, and then
infer the attack class from the matching alert payload class.

78

6.1. Architecture

To the best of our knowledge, Panacea is the first system proposed that:

• Automatically classifies attacks detected by an ABS, without using pre-determined
heuristics.

• Does not need manual assistance to classify attacks (with some exceptions to be
described in Section 6.1.1.2).

Panacea requires a training phase for its engine to build the attack classifier. Once the
training phase is complete, Panacea classifies any attack detected by the ABS automati-
cally.

Limitation of the approach Panacea analyses the generated alert payload to build
its classification model. Thus, any alert generated by attacks/activities that do not involve
a payload (e.g., a port scan or a DDoS) cannot be automatically classified. As most of the
harmful attacks inject some data in target systems, we do not see this as a serious limita-
tion. However, Panacea cannot work with an ABS that detects attacks without analysing
the packet payloads. Here we consider only attacks that target networks, however it is
possible to extend the approach to include anomaly-based HIDSs too.

6.1 Architecture
Panacea consists of two interacting components: the Alert Information Extractor

(AIE) and the Attack Classification Engine (ACE). The AIE receives alerts from the
IDS(s), processes the payload, and extracts significant information, outputting alert meta-
information. This meta-information is then passed to the ACE that automatically deter-
mines the attack class. The classification process goes through two main stages. First,
the ACE is trained with several types of alert meta-information to build a classification
model. The ACE is fed alert meta-information and the corresponding attack class. The
attack class information can be provided in several ways, either manually by an operator
or automatically by extracting additional information from the original alert (only when
the alert has been raised by an SBS). Secondly, when the training is completed, the ACE
is ready to classify new incoming alerts automatically. We now describe each component
and the working modes of Panacea in detail. Figure 6.1 depicts Panacea and its internal
components.

6.1.1 Alert Information Extractor
The first component we examine is the AIE. The extraction of relevant information

from alert payloads is a crucial step, as it is the basis for attack class inference. Re-
quirements for this phase are that the extraction function should capture enough features
from the original information (i.e., the payload) to distinguish alerts belonging to different

79

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

Figure 6.1: An overview of the Panacea architecture and the internal components.

classes, and it should be efficient w.r.t. the required memory space. We now describe the
analysis techniques we have chosen.

6.1.1.1 Extracting and Storing Relevant Information

In Section 3.1.2 we introduced the n-gram analysis technique for the detection of
network attacks. N-gram analysis is a suitable technique to capture data features also
for the problem of attack classification, and the AIE employs such a technique to extract
relevant information from alert payloads.

As Wang et al. note [120], by using higher order n-grams (i.e., n-grams where n > 1)
it is possible to capture more data features and to achieve a more precise analysis. One has
to consider that the whole feature space size of a higher-order n-gram is 256n (where n is
the n-gram order). The comparison of byte frequency values becomes quickly infeasible,
also for values of n such as 3 or 4, because the space needed to store average and standard
deviation values for each n-gram grows exponentially (e.g., 640GB would be needed to
store 5-grams statistics). Although a frequency-based n-gram analysis may seem to model
data distribution accurately, Wang et al. experimentally show that a binary-based n-gram
analysis is more precise in the context of network data analysis. In practice, the fact that
a certain n-gram has occurred is stored, rather than computing average byte frequency
and standard deviation statistics. The reason why the binary approach performs better is
that high-order n-grams are more sparse than low-order n-grams, thus it is more difficult
to gather accurate byte-frequency statistics as the order increases. This approach has an
additional advantage, other than being more precise. Because less information is required,
it requires less space in memory, and we can consider higher-order n-grams (such as 5).

80

6.1. Architecture

Bitmap The ideal data structure to store binary-based n-gram information is a bitmap.
A bitmap is a type of memory organization used to store information as spatially mapped
arrays of bits. In our case, each map entry (a bit) maps a certain n-gram: thus the bitmap
size depends on the n-gram order. For 3-grams the bitmap size is 2MB, and for 5-grams
the size goes up to 128GB. Here we follow Wang et al. and we use Bloom filters to
overcome the space dimension problem.

Bloom filter A Bloom filter [24] (BF) is a method to represent a set of S elements
(n-grams in our embodiment) in a smaller space. Formally, a BF is a pair 〈b,H〉 where b
is a bit map of l bits, initially all set to 0, and H is a set of k independent hash functions
h1 . . . hk. H determines the storage of b in such a way that, given an element s in S: ∀hk,
bi = 1 ⇐⇒ hk(s) mod l = i. In other words, for each n-gram s in S, and for each hash
function hk, we compute hk(s) mod l, and we use the resulting value as index to set to
1 the bit in b corresponding to it. When checking for the presence of a certain element s,
the element is considered to be stored in the Bloom filter if: ∀hk, bhk(s) mod l = 1. A BF
with a size of 10KB is sufficiently large to store the alert meta-information resulting from
5-grams analysis. Figure 6.2 shows an example of insertion in a BF.

A BF employs k different hash functions at the same time to decrease the probability
of a false positive (the opposite situation, a false negative, cannot occur). False positives
occur when all of the bit positions calculated for a given element have been set to 1 when
inserting previous elements (as depicted in Figure 6.3), due to the collisions generated by
hash functions. The false positive rate for a given BF is (1−e

kn
l)k, where n is the number

of elements already stored.

6.1.1.2 Operational Modes

The AIE not only extracts information from alerts as described above, but it is also
responsible for forwarding the attack class information to the classification engine, when
the latter is in training mode. The attack class can be provided either automatically or
manually. In case an SBS is deployed next to the ABS and it is monitoring the same data,
it is possible to feed the ACE during training both the payload and the attack class of
any alert generated by the SBS. We define this as the automatic mode, since no human
operator is required to carry out the attack classification. A human operator can classify
the alerts raised by the ABS (in a manner consistent with the SBS classification), hence
integrating those with the alerts raised by the ABS during the ACE training. We call this
the semi-automatic mode. The last possible operative mode is the manual mode. In this
case, any alert is manually classified by an operator.

Each mode presents advantages and disadvantages. In automatic mode, the workload
is low, but on the other hand the classification accuracy is likely to be low as well. In
fact, the SBS and the ABS are likely to detect different attacks, hence the classification
engine could be trained to correctly classify only a subset of the ABS alerts. The manual
mode requires human intervention but it is likely to produce better results, since each alert

81

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

(a) Inserting n-gram “abcde”

(b) Inserting n-gram “pqrst”

Figure 6.2: Examples of inserting two different 5-grams. H1, H2 and H3 represent dif-
ferent hash functions.

is consistently classified (the classification that comes out-of-the-box with an SBS could
not be suitable). We assume that the alerts raised by the SBS and ABS have already been
verified and any false positive alert has already been purged (e.g., using ALAC [101] or
our ATLANTIDES).

6.1.2 Attack Classification Engine

The ACE includes the algorithm used to classify attacks. Since we are aware of
the attack class information, we consider only supervised machine learning algorithms.
These algorithms generally achieve better results than unsupervised algorithms (where
the algorithm, e.g. K-medoids, deduces classes by measuring inter-data similarity). The
classification algorithm must meet several requirements, namely:

82

6.1. Architecture

Figure 6.3: Example of a false positive. The element “zxcvb” has not been inserted in
the Bloom filter. Due to the collisions generated by the hash functions, the test for its
presence returns “true”.

• Support for multiple classes, as alerts fall in several classes.

• Classification of high-dimensional data, since each bit of the BF data structure the
ACE receives in input is seen as a dimension of analysis.

• fast training phase (the reason for this will be clarified later);

• Estimate classification confidence when in classification phase (optional).

We consider the last requirement optional, as it does not directly influence the quality
of the classification, though it is useful to improve the system usability. Confidence mea-
sures the likelihood of having a correct classification for a given input. Users can instruct
the system to forward any alert whose confidence value is lower than a given threshold
for manual classification, hence reducing the probability of misclassification (at the price
of an increased workload).

We chose two algorithms for our experiments: (1) Support Vector Machines (SVM)
and (2) the RIPPER rule learner. These algorithms implement supervised techniques,
their training and classification phases are fast and handle high-dimensional data. Both
algorithms perform non-incremental learning. A non-incremental algorithm iterates on
samples several times to build the best classification model by minimizing the classifica-
tion error. The whole training set is then needed at once, and additional samples cannot
be incorporated in the classification model unless the training phase is run from scratch.
On the other hand, an incremental algorithm can modify the model after the main train-
ing phase as new samples become available. An incremental algorithm usually performs
worse than a non-incremental algorithm, because the model is not re-built. Thus, a non-
incremental algorithm is the best choice to perform an accurate classification. However,
because it is highly unlikely that we can collect all alerts for training at once the choice of
non-incremental algorithms could be seen as a limitation of our system.

83

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

In practice, thanks to the limited BF memory size, we can store a huge number of
samples and, by applying a “batch training”, we can simulate incremental learning in
non-incremental algorithms. As new training samples become available, we add them
to the batch training set and build the classifier using the entire set only when a certain
number of samples is reached. Then, the classifier is re-built with the set of “batches”
available at that time. Because both SVM and RIPPER are fast in training, there are no
computational issues.

We chose SVM and RIPPER, not only because they meet the requirements, but for two
additional reasons. First, they yield high-quality classifications. Meyer et al. [88] test the
SVM against several other classification algorithms (available from the R project [139])
on real and synthetic data sets. An SVM outperforms competitors in 50% of tests and
ranks in the top 3 in 90% of them. RIPPER has been used before in the context of in-
trusion detection (e.g., on data relative to system calls and network connections [76, 77])
with good results. Secondly, because they approach the classification problem differently
(geometric for SVM, and rule-based for RIPPER), the algorithms are supposed to com-
pensate for each others weaknesses. Hence, we can evaluate which algorithm is more
suitable in different contexts. We will now provide some detail on the algorithms.

6.1.2.1 Support Vector Machines

An SVM (Vapnik and Lerner [115]) is a set of supervised learning methods used for
classification. In the original formulation, an SVM is a binary classifier. It uses a non-
linear mapping to transform the original training data into a higher dimension. Then, it
searches for the linear optimal separating hyperplane, i.e., a plane that separates the sam-
ples of one class from another. An SVM uses “support vectors” and “margins” to find
the optimal hyperplane, i.e., the plane with the maximum margin. Lets us consider Fig-
ure 6.4. By selecting an appropriate non-linear mapping to a sufficiently high dimension,
data samples from two classes can always be separated by a hyperplane. In fact, there
are a number of separating hyperplanes. However, we expect the hyperplane with the
larger margin to be more accurate at classifying future data samples, because it gives the
largest separation “distance” between classes. The margin is calculated by constructing
two parallel hyperplanes, one on each side of the hyperplane, and then by “pushing them
up against” the data sets. Any data samples that fall on these side hyperplanes are called
support vectors.

The original SVM algorithm has been modified to classify non-linear data and to use
multiple classes. Boser et al. [26] introduce non-linear data classification by using kernel
functions (i.e., non-linear functions). The resulting algorithm is similar, but every dot
product is replaced with a non-linear kernel function. Then, the algorithm proceeds to
find a maximal separating hyperplane in the transformed space.

To support multiple classes, the problem is reduced to multiple binary sub-problems.
Given m classes, m classifiers are trained, one for each class. Any test sample is assigned
to the class corresponding to the largest positive distance.

84

6.1. Architecture

Figure 6.4: Hyperplanes in a 2-dimensional space. H1 separates samples sets with a small
margin, H2 does that with the maximum margin. The example refers to linearly separable
data. The support vectors are shown with a thicker red border.

6.1.2.2 RIPPER

RIPPER (Cohen [34]) is a fast and effective rule induction algorithm. RIPPER uses
a set of IF-THEN rules. An IF-THEN rule is an expression in the form IF <condition>
THEN <conclusion>. The IF-part of a rule is called the rule antecedent. The THEN-
part is the rule consequent. The condition consists of one or more attribute tests, that
are logically ANDed. A test ti is in the form ti = v for categorical attributes (where v
is a categorical label) or either ti ≥ θ or ti ≤ θ for numerical attributes (where θ is a
numerical value). The conclusion contains a class prediction. If, for a given input, the
condition (i.e., all of the attribute tests) holds true, then the rule antecedent is satisfied
and the corresponding class in the conclusion is returned (the rule is said to “cover” the
input). Since RIPPER employs ordered rules, when a match occurs, the algorithm does
not evaluate other rules. Some examples of rules are:

IF bf [i] = 1 AND . . . AND bf [k] = 1 THEN class = cross-site scripting
IF bf [l] = 1 AND . . . AND bf [m] = 1 . . . AND bf [n] = 1 THEN class = sql injection

RIPPER builds the rule set for a certain class SCi as follows. The training data set is
split into two sets, a pruning set and a growing set. The classifier is built using these two
sets by repeatedly inserting rules starting from an empty rule set (the growing set). The
algorithm heuristically adds one condition at a time until the rule has no error rate on the
growing set.

85

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

RIPPER implements also an optimisation phase, in order to simplify the rule set. For
each rule ri in the rule set, two alternative rules are built; the replacement of ri and the
revision of ri. The replacement of ri is created by growing an empty rule r

′
i, and then

pruning it in order to reduce the error rate of the rule set including r
′
i on the pruning data

set. The revision of ri is constructed similarly, but the revision rule is built heuristically
by adding one condition at a time to the original ri rather than to an empty rule. Then the
three rules are examined on the pruning data to select the rule with the least error rate.

When multiple classes C1 . . . Cn are used, RIPPER sorts classes on a sample fre-
quency basis and induces rules sequentially from the least prevalent class SC1 to the
second most prevalent class SCn−1. The most prevalent class SCn becomes the default
class, and no rule is induced for it (thus, in case of a binary classification, RIPPER induces
rules for the minority class only).

6.1.3 Implementation
We have implemented a prototype of Panacea to run our experiments. The prototype is

written in Java, since we link to the libraries provided by the Weka platform [136]. Weka
is a well-known collection of machine learning algorithms, and it contains an implemen-
tation of both SVM and RIPPER. Weka provides also a comprehensive framework to run
benchmarks on several data sets under the same testing conditions. In our benchmarks
we have used the Weka algorithms with standard settings (e.g., SVM employs a polyno-
mial kernel function). The attacks samples generated by NIDSs, in the form of alerts, are
stored in a database that the system fetches to extract the alert payload information.

6.2 Benchmarks
Public data sets for benchmarking IDSs are scarce. It is even more difficult to find

a suitable data set to test Panacea, since no research has systematically addressed the
problem of (semi)automatically classifying attacks detected by an ABS before. Hence, we
have collected three different data sets (referred to as DSA, DSB and DSC , see below
for a description of the data sets) to evaluate the accuracy of Panacea. These data sets
are used to evaluate the accuracy of Panacea in different scenarios: (1) when working in
automatic mode (DSA), (2) when using an ad hoc taxonomy and the manual mode (DSB)
and (3) when classifying unknown attacks (e.g., generated by two ABSs), having trained
the system with alerts from known attacks (DSB and DSC).

In the literature there are several taxonomies and classifications of security events.
For instance, Howard [56], Hansman and Hunt [54], and the well-known taxonomy used
in the DARPA 1998 [81] and 1999 [83] data sets. Only the latter classification has been
used in practice (in spite of its course granularity, as it contains only four classes which
are unsuitable to classify modern attacks). A modern IDS employs its own attack classifi-
cation, which is usually non-standard and – according to Andersson et al. [15] – difficult
to translate into a standardized classification, e.g., the XML-based Intrusion Detection

86

6.2. Benchmarks

Message Exchange Format [41]. In our experiments, we use the Snort classification for
benchmarks with DSA (see [145] for a detailed taxonomy) and the Web Application Se-
curity Consortium Threat Classification [149] for benchmarks with DSB and DSC , as
they contain alerts related to web attacks.

To evaluate the accuracy of the classification model, we use two approaches. For test
(1) and (2), we employ cross-validation. In cross-validation, samples are partitioned into
sub-sets. The analysis is first performed on a single sub-set, while the other sub-set(s)
are retained to validate the initial analysis. In k-fold cross-validation, the samples are
partitioned into k sub-sets. A single sub-set is retained as the validation data for testing
the model, and the remaining k − 1 sub-sets are used as training data to build the model.
The process is repeated k times (the “folds”), using each of the k sets exactly once to
validate the model. Usually the k fold results are combined (e.g., averaged) to generate a
single estimation. The advantage of this method is that all of the samples are used for both
training and validation, and each sample is used for validation exactly once. We use 10
folds in our experiments, which is a standard value, used in the Weka testing environment
too.

For test 3), we use one of DSB and DSC for training and the other for testing. The
accuracy is evaluated by counting the number of correctly classified attacks.

Attack Class Description # of samples
attempted-recon∗ Attempted information leak 1379

web-application-attack∗ Web application attack 1032
web-application-activity∗ Access to a potentially 599

vulnerable web application
unknown Unknown traffic 66

attempted-user∗ Attempted user privilege gain 45
misc-attack Miscellaneous attack 44

attempted-admin Attempted administrator 32
privilege gain

attempted-dos Attempted Denial of Service 14
bad-unknown Potentially bad traffic 13

Table 6.1: DSA (alerts raised by Snort): attack classes and samples. It is not surprising
that web-related attacks account for more than 50%, since most Snort signatures address
web vulnerabilities. ∗ marks classes that contain web-related attacks.

DSA contains alerts raised by Snort (see Table 6.1 for alert figures). To collect the
largest number of alerts possible, we have used several tools to automatically inject attack
payloads (Nessus and a proprietary vulnerability assessment tool). Attacks have been
directed against a system running some virtual machines with both Linux- and Windows-
based installations, which expose several services (e.g., web server, DBMS, web proxy,

87

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

SMTP and SSH). We collected more than 3200 alerts in total, classified in 14 different
(Snort) attack classes. However, some classes have few alerts, thus we select only classes
with at least 10 alerts. This data set (and DSB as well) is synthetic. We do not see
this as a limitation since the alerts cover multiple classes and trigger a large number of
different signatures. We test how the system behaves in automatic mode, the whole set
being generated by Snort.

DSB contains a set of more than 1400 Snort alerts related to web attacks (Table 6.2
provides alert details). To generate this data set, we have used Nessus, Nikto [132] (a web
vulnerability scanner), and we have manually injected attack payloads collected from
the well-known site Milw0rm, that hosts a large collection of web exploits [135]. The
attack classification has been performed manually (manual mode), since Snort does not
provide a fine-grained classification of web-related attacks (alerts are allocated to different
classes with other alerts, see Table 6.1). Attacks have been classified according to the Web
Application Security Consortium Threat Classification [149].

Attack Class # samples
Path Traversal 931

Cross-site Scripting 399
SQL Injection 73

Buffer Overflow 8

Table 6.2: DSB: attack classes and samples. Attacks have been classified according to
the Web Application Security Consortium Threat Classification.

DSC is a collection of alerts generated over a period of 2 weeks by two ABSs, i.e.,
POSEIDON and Sphinx. We recorded network traffic directed to a main web server of the
university network, and did not inject any attack. Afterwards, we processed this data with
POSEIDON and Sphinx to generate alerts. The inspection of alerts and the classification
of attacks has been performed manually (using the same taxonomy we apply for DSB).
The data set consists of a set of 100 alerts, and Table 6.3 reports attack details.

Attack Class # samples
Path Traversal 53

Cross-site Scripting 27
SQL Injection 16

Buffer Overflow 4

Table 6.3: DSC : attack classes and samples. Attacks have been classified according to
the Web Application Security Consortium Threat Classification.

88

6.2. Benchmarks

6.2.1 Tests with DSA
We use DSA to validate the general effectiveness of our approach. There are three

factors which influence the classification accuracy, namely: (1) the number of alerts pro-
cessed during training, (2) the length of n-grams used, and (3) the classification algorithm
selected. This preliminary test aims to identify which parameter combination(s) results in
the most accurate classification.

Testing methodology We proceed with a 3-step approach. First, we want to identify
an adequate number of samples required for training: in fact, a too low number of sam-
ples could generate an inaccurate classification. On the other hand, while it is generally a
good idea to have as many training samples as possible, after some point the benefit from
adding additional information could become negligible. Secondly, we want to identify the
best n-gram length. Short n-grams are likely to be shared among many attack payloads,
and the attack diversification would be poor (i.e., a number of different attacks contains
the same n-grams). On the other hand, long n-grams are unlikely to be common among
attack payloads, hence it would be difficult to predict a class for a new attack that does not
share a sufficient number of long n-grams. Finally, we analyse how the classification al-
gorithms work by analysing the overall classification accuracy (i.e., considering all of the
attack classes) and the per-class accuracy. The two algorithms approach the classification
problem in two totally different ways, and each of them could be performing better under
different circumstances.

To avoid bias by choosing a specific attack, we randomly select alerts in the sub-sets.
In fact, by selecting alerts for training in the same order they have been generated (as
opposed to random), we could end up with few (or no) samples in certain classes, hence
influencing the accuracy rate (i.e., a too good, or bad, value). To enforce randomness, we
also run several trials (five) with different sub-sets and calculate the average accuracy rate.
The total amount of time spent in training mode varies between 8.9 seconds (RIPPER,
1000 alerts) and 39.7 (SVM, 3000 alerts). Thus, the requirement of a fast training is met.
Table 6.4 reports benchmark results (the percentage of correctly classified attacks) for
SVM and RIPPER.

SVM
n-gram length

RIPPER
n-gram length

samples 1 2 3 4 1 2 3 4
1000 62.6% 76.8% 77.3% 76.7% 66.1% 75.9% 76.2% 75.7%
2000 65.9% 78.6% 78.9% 77.7% 69.4% 76.7% 76.9% 76.4%
3000 66.3% 79.4% 79.6% 78.6% 72.7% 77.2% 77.5% 76.9%

Table 6.4: Test results onDSA with SVM and RIPPER. We report the average percentage
of correctly classified attacks of five trials. As the number of samples in the testing sub-set
increases, the overall effectiveness increases as well. Longer n-grams generally produce
better results, up to length 3. SVM performs better than RIPPER by a narrow margin.

89

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

Discussion Tests with DSA indicate that the approach is effective in classifying at-
tacks. As the number of training samples increases, accuracy increases as well for both
algorithms. Also the n-gram length directly influences the classification. The number
of correctly classified attacks increases as n-grams get longer, up to 3-grams. N-grams
of length 4 produce a slightly worse classification, and the same happens for 1-grams
(which achieve the worst percentages). SVM and RIPPER present similar accuracy rates
on 3-grams, with the former being slightly better. However, if we perform an analysis
based on per-class accuracy (see Table 6.5), we observe that, although both classification
algorithms score high on accuracy level for the three most populated classes, RIPPER is
far more precise than SVM (in once case, the “web-application-activity” class, by nearly
15%).

When we look at the overall accuracy rate, averaged among the 9 classes, for DSA,
SVM performs better because of the classes with few alerts. If we zoom into the classes
with a significant number of samples, we observe an opposite behaviour. This means that,
with a high number of samples, RIPPER performs better than SVM.

In Table 6.5, a sub-set with fewer samples seems to achieve better results (although
percentages differ by a narrow margin), when considering the same algorithm. This hap-
pens for SVM once when using 1000 training samples (“attempted-recon” class) and
twice when using 2000 training samples (“web-application-attack” and “web-application-
activity” classes). When using 2000 training samples, RIPPER performs best in the “web-
application-activity” class. The reason for this is that alerts in the sub-sets are randomly
chosen, thus a class could have a different number of samples among trials.

SVM RIPPER
of samples # of samples

Attack Class 1000 2000 3000 1000 2000 3000
attempted-recon 90.9% 90.5% 90.7% 90.4% 93.9% 94.0%
web-application-attack 79.8% 89.0% 88.8% 97.4% 98.8% 99.1%
web-application-activity 80.8% 81.2% 80.9% 93.7% 96.1% 95.8%

Table 6.5: Per-class detailed results on DSA, using 3-grams. We report the average per-
centage of correctly classified attacks of five trials. RIPPER performs better than SVM in
classifying all attacks, regardless the attack class or the number of samples.

6.2.2 Tests with DSB
DSB is used to validate the manual mode and the use of an ad hoc classification. To

perform the benchmarks, we use the same n-gram length that achieves the best results in
the previous test. Table 6.6 details our findings for SVM and RIPPER.

Discussion The test results on DSB show that Panacea is effective also when using a
user-defined classification, regardless of the classification algorithm is chosen. Regarding

90

6.2. Benchmarks

Attack Class SVM RIPPER
Path Traversal 98.6% 99.1%
Cross-site Scripting 97.5% 98.4%
SQL Injection 97.6% 96.2%
Buffer Overflow 37.5% 37.5%
Percentage of total attacks 98.0% 97.7%
correctly classified

Table 6.6: Test details (percentage of correctly classified attacks) on DSB with SVM and
RIPPER. RIPPER achieves better accuracy rates for the two most numerous classes, al-
though by a narrow margin. We observe the same trend for the rates reported in Table 6.5.

accuracy rates, RIPPER shows a higher accuracy for most classes, although SVM scores
the best classification rate (by a narrow margin).

Only the “buffer overflow” class has a low classification rate. Both algorithms have
wrongly classified most of buffer overflow attacks in the “path traversal” class. This is
because (1) the number of samples is lower than for the other classes, which are at least
10 times more numerous, and 2) a number of the path traversal attacks present some byte
encoding that resembles byte values typically used by some buffer overflow attack vectors.
In the case of RIPPER, the “path traversal” class has the highest number of samples, hence
no rule is induced for it and any non-matching samples is classified in this class.

6.2.3 Tests with DSC
An ABS is supposed to detect previously-unknown attacks, for which no signature

is available yet. Hence, we need to test how Panacea behaves when the training is ac-
complished using mostly alerts generated by an SBS but afterwards Panacea processes
alerts generated by an ABS. For this final test we simulate the following scenario. A user
has manually classified alerts generated by an SBS during the training phase (DSB) and
she uses the resulting model to classify unknown attacks, detected by two different ABSs
(POSEIDON and Sphinx). Since we collected few buffer overflow attacks, we use the
Sploit framework [116] to mutate some of the original attack payloads and increase the
number of samples for this class, introducing attack diversity at the same time. Thus, we
obtain additional training samples with a different payload. Table 6.7 shows the percent-
age of correctly classified attacks by SVM and RIPPER. For the buffer overflow attacks,
we report accuracy values for the original training set (i.e. representing real traffic) and
the “enlarged” training set (in brackets).

Discussion Tests on DSC show that the SVM performs better than RIPPER when
classifying attack instances that have not been observed before. The accuracy rate for
the “buffer overflow” class is the lowest, and most of the misclassified attacks have been
classified in the “path traversal” class (see the discussion of benchmarks for DSB). How-

91

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

Attack Class SVM RIPPER
Path Traversal 98.1% 94.4%
Cross-site Scripting 92.6% 88.9%
SQL Injection 100.0% 87.5%
Buffer Overflow 50.0% (75.0%) 25.0% (50.0%)
Percentage of total attacks 92.0% (93.0%) 89.0% (91.0%)
correctly classified

Table 6.7: Test details (percentage of correctly classified attacks) on DSC with SVM
and RIPPER. SVM perform better than RIPPER in classifying any attack class. For the
“buffer overflow” class and the percentage of total attacks correctly classified we report
(in brackets) the accuracy rates when Panacea is trained with additional samples generated
using the Sploit framework.

ever, with a higher number of training samples (generated by using Sploit), the accuracy
rate increases w.r.t. previous tests. This suggest that, with a sufficient number of training
samples, Panacea achieves high accuracy rates.

6.2.4 Summary of Benchmark Results
From the benchmarks results, we can draw some conclusions after having observed

the following trends:

• The classification accuracy is always higher than 75%.

• SVM performs better than RIPPER when considering the classification accuracy
for all classes, when not all of them have more than 50-60 samples (DSA, DSB

and DSC).

• RIPPER performs better than SVM when the class has a good deal of training
samples, i.e., at least 60-70 in our experiments (DSA and DSB).

• SVM performs better than RIPPER when the class presents high diversity and at-
tacks to classify have not been observed during training (DSC).

We can conclude that SVM works better when a few alerts are available for training
and when attack diversity is high, i.e., the training alert samples differ from the alerts
received when in classification phase. On the other hand, RIPPER shows to be more
accurate when trained with a high number of alerts.

Evaluating confidence However good Panacea is, the system is not error-free. The
consequences of a misclassification can have a direct impact on the overall security. Think

92

6.2. Benchmarks

of a buffer overflow attack, for which usually countermeasures must take place immedi-
ately (because of the possible consequences), that is misclassified as a path traversal at-
tack, for which the activation of countermeasures can be delayed (e.g., after other actions
taken by the attacker). This event occurs often in our benchmarks when the system se-
lects the wrong class. Both SVM and RIPPER can generate a classification confidence
value for each attack. This value can be used to evaluate the accuracy of the classifica-
tion. The lower the classification value is (in a range from 0.0 to 1.0), the more likely the
classification is to be wrong (see Table 6.8 for average confidence values for DSC).

SVM RIPPER
Average confidence value for correctly classified attacks 0.75 0.62
Average confidence value for misclassified attacks 0.37 0.43
Percentage of total attacks correctly classified without

92.0% 89.0%
confidence evaluation
Percentage of total attacks correctly classified with

95.0% 94.0%
confidence evaluation
of alerts forwarded for manual classification 10/100 13/100
of forwarded attacks that were actually wrongly

3/10 5/13
classified
of forwarded attacks that were actually correctly

7/10 8/13
classified

Table 6.8: Effects of confidence evaluation for DSC , when Panacea is trained with the
standard DSB . When considering the classification confidence to forward alerts for man-
ual classification, the human operator classification increases by 3% and 5% the overall
accuracy rate by inspecting 10 and 13 alerts, out of 100, when Panacea uses SVM and
RIPPER respectively.

The confidence value can be taken into consideration to detect possible misclassi-
fication. Users can set a minimum confidence value (e.g., 0.5). Any alert with a lower
confidence value is forwarded to a human operator for manual classification. With this ad-
ditional check, we are able to increase the percentage of total attacks correctly classified
up to 95% for SVM and 94% for RIPPER (when using the standard training set, without
additional training samples generated with Sploit). The additional workload involves also
the manual classification of alerts which have been correctly classified by the system but
whose confidence value is lower than the set threshold. However, less than 10 alerts (out
of 100) have been forwarded for manual classification when this action was not needed.
Table 6.8 reports the details regarding the evaluation of the confidence value.

6.2.5 Usability in Panacea
Panacea aims not only to provide automatic attack classification for an ABS, but to

improve usability as well. In automatic mode, Panacea performs an accurate classifi-

93

Chapter 6. Panacea: Automating the Classification of Attacks for
Anomaly-based Network Intrusion Detection Systems

cation (more than 75% of correctly classified attacks). In semi-automatic and manual
modes, users actively take part in the classification process: however, users are requested
to provide a limited input (i.e., a class label). Panacea classifies attacks systematically
and automates (1) the extraction of relevant information used to distinguish an attack
class from another and (2) the update of the classification model. These tasks are usually
left to the user’s experience and knowledge, thus they can be error-prone and not compre-
hensive. Table 6.9 reports actions that users have to take with and without the support of
Panacea.

User actions
Without Panacea With Panacea

DSA Classify any alert No action to take
DSB Classify any alert Classify alerts used during training

DSC Classify any alert
No action to take

(alerts have been previously classified)

Table 6.9: Actions that users have to take with or without Panacea w.r.t. alert classification
for each data set we use during benchmarks.

6.3 Related Work
Although the lack of attack classification is a well-known issue in the field of anomaly-

based intrusion detection, little research has been done on this topic.
Robertson et al. [106] suggest to use heuristics to infer the class of (web-based) at-

tacks. This approach has several drawbacks. Users have to generate heuristics (e.g.,
regular expressions) to identify attack classes. They have to enumerate all of the possible
attack variants, and update the heuristics each time a new attack variation is detected. This
is a time consuming task. Panacea can operate in an automatic way, by extracting attack
information from any SBS, or employ an ad-hoc classification, with the user providing
only the attack class.

Wang and Stolfo [121] use a “Z-String” to distribute among other ABSs attack pay-
loads to enhance detection. A Z-String contains the information resulting from the n-gram
analysis of the attack payload. Once a certain payload has been flagged as malicious, the
corresponding Z-String can be distributed to other IDSs to detect the attack also, and stop
it at an early stage (think of a worm). If some traffic matches a certain Z-String, that data
is likely to be a real attack. Although a Z-String is not used for attack classification, by
attaching a class label it would be possible to classify each attack. However, this approach
is not systematic, as each attack that does not exactly match any Z-String would have to
be manually classified. A Z-String is based on a frequency-based n-gram analysis, thus an
exact match could be difficult to achieve. On the other hand, Panacea applies a systematic

94

6.4. Conclusion

classification using the more precise binary-based n-gram analysis. Panacea can also use
as a source of information the alerts generated by an SBS, and not only by an ABS.

6.4 Conclusion
In this chapter we present Panacea, a system that automatically and systematically

classifies attacks detected by a payload-based ABS (and consequently the generated alerts).
Panacea extracts information from alerts during a training phase, then predicts the attack
class for new alerts. The alerts used to train the classification engine can be generated by
an SBS as well as an ABS. In the former case, no manual intervention is requested (the
system operates in automatic mode), as Panacea automatically extracts the attack class
from the alert. In the latter case, the user is required to provide the attack class for each
alert used to train the classification engine.

Panacea improves the usability and makes it possible to integrate anomaly-based
with signature-based IDSs, for instance by using security information management tools.
Benchmarks show that the approach is effective in classifying attacks, even those that
have not been detected before (and not used for training). Although Panacea works in
an automatic way, users can employ ad-hoc classifications, and even manually tune the
engine for more precise classifications.

95

Chapter 7
Concluding Remarks

We now summarize the contribution of this thesis, in relation to the main
Research Question discussed in Chapter 1. We also highlight future
research directions in the area of anomaly- network-based intrusion detection.

In the introductory chapter we formulate the following research question:

“How can we extend current anomaly- network-based IDSs to improve their usability,
yet delivering an effective IDS?”

We argue that current anomaly-based systems are less usable than signature-based
systems in daily operations, thus preventing users to benefit fully from the deployment of
anomaly-based detection technologies. We see in these limitations the main reason why
anomaly-based systems have not been widely deployed, despite research that has been
conducted for more than a decade.

Our primary aim is in particular to develop methods that provide practical, efficient
and effective ways to decrease user burden and in general enhance the overall user expe-
rience of managing network intrusions.

We achieve the aim successfully, allowing us to state, as main conclusion, that the
development of effective ways to improve usability for anomaly-based network intrusion
detection systems is feasible. We support this conclusion by describing our explorations,
which span a range of different results:

• We improve the well-known detection algorithm PAYL (for the HTTP protocol,
from 90% up to 100% detection rate and from 0,17% down to 0,0016% false alert
rate) by adding a neural network that pre-processes network traffic (POSEIDON,
Chapter 3).

97

Chapter 7. Concluding Remarks

• We reduce the number of false positive alerts (between 50% and 100% fewer alerts,
for both Snort and POSEIDON) by correlating alerts generated by an intrusion
detection system monitoring the incoming traffic with a content-based analysis of
the outgoing traffic (ATLANTIDES, Chapter 4).

• We develop a method to detect web attacks by automatically generating regular
expressions, that users can edit to tune the anomaly-based detection engine, to
validate incoming HTTP requests (Sphinx, Chapter 5).

• We automate the classification of alerts generated by an anomaly-based intrusion
detection system by extracting the payload of previous alerts which can be classi-
fied using both standard and user-defined taxonomies (Panacea, Chapter 6).

We call this comprehensive set of tools SilentDefense: POSEIDON is the pivotal
and basic component of a “pluggable” architecture (see Figure 7.1). Nevertheless each
component can operate stand-alone, as well as in cooperation with the other components.

Figure 7.1: An overview of the contributions

We want to stress that SilentDefense (and in general anomaly detection) is not an al-
ternative to signature-based systems. The best chance to detect an attack is provided by

98

the combination of the two approaches. In particular, a signature-based system works bet-
ter for well-known applications and systems (e.g., the Windows operating systems), while
SilentDefense can detect zero-day and targeted attacks. The latter attack type usually tar-
gets custom-developed software. Think of web applications developed by corporations
for their internal users, or critical infrastructures that make use of proprietary SCADA
systems [140]. Figure 7.2 shows a comparison between Snort (a signature-based system)
and SilentDefense.

Figure 7.2: A comparison of the relative strengths of Snort (signature-based, left side) and
SilentDefense (right side). Snort performs a more accurate detection of attacks against
standard and well-known software (e.g., operating systems), port scans and some mal-
ware. SilentDefense is more suitable to detect zero-day and targeted attacks, and it can
protect custom-developed applications or systems.

Guidelines for building effective payload- anomaly-based intru-
sion detection systems

The ultimate goal of research is to provide a comprehensive theory, in order to support
practitioners in predicting the effectiveness of the systems they develop, without having
to run extensive benchmarks. In the intrusion detection field there are some works which
make use of information theory to model and detect attacks (Evans et al. [47], Goel and
Bush [52]). However, no theoretical framework is available to form the basis of an effec-
tive anomaly-based intrusion detection system.

99

Chapter 7. Concluding Remarks

The estimate of the error rates an intrusion detection system will generate is impos-
sible to achieve through theory alone. To illustrate this point, consider the field of bio-
metrics. A biometric authentication device shows some similarities with an intrusion
detection system. Such a device usually stores the templates of legitimate users into a
database (equivalent to the normal traffic model in an anomaly-based system). There are
two possible error types for this device: a legitimate user is not recognized (false reject)
and an illegitimate user is wrongly recognized (false accept). In the intrusion detection
terminology, these errors are a false positive and a false negative respectively. A biomet-
ric device, similarly to an anomaly-based system, usually employs a distance function and
a threshold to discriminate legitimate and illegitimate users: it is possible to draw ROC
curves (see Section 2.3.4) to analyse the trend of the two error rates as the threshold value
changes. Bolle et al. [25] state that it is not possible to pre-compute, or establish theoreti-
cally, the error rates a biometric device will generate because such rates will depend on the
noise inside the normal data. The only way to determine error rates is by benchmarking
the device. Because of the similarities in the approaches, we can infer that estimating the
error rates of an intrusion detection system is possible only by performing benchmarks.

To make things worse for intrusion detection systems, the digital world is relatively
young and it has been constantly adding new complex technologies (think of the transition
from static HTML web pages to AJAX-enriched web applications). Thus, an intrusion
detection system is not likely to collect a comprehensive set of normal inputs during its
training phase, due to the complexity of the monitored environment (on the other hand,
a biometric authentication device usually has a well-defined set of user profiles). Attack
techniques have been constantly changing too, and attackers can use different techniques
to exploit the same vulnerability. Researchers develop protections in response to a new
attack technique, or a new class of vulnerabilities.

Although this work does not provide new theoretical results, it is possible to give some
guidelines on how to build effective anomaly-based intrusion detection systems, based on
the experienced we gained. We identify three phases of the development of an IDS:

• Acquiring knowledge of the context

• Choosing the abstraction to model input data

• Diversifying data analysis

Context Knowledge There are a number of different approaches that can be chosen
to analyse data in order to detect intrusions. One approach can perform better than others,
depending also on the input data set. Therefore, the selection of the input data source is an
important issue. To select the input source, several factors should be taken into account.
First, the environment the system will monitor. The system could be monitoring a specific
network application (that uses a certain protocol), or heterogeneous hosts that offer a
variety of network services. Secondly, each application can be targeted by a different set
of attacks. Thus, the knowledge of attacker techniques plays an important role to select
the input source to be analysed. For instance, network flows are the primary source of

100

information to detect Distribute Denial of Service (DDos) attacks, while HTTP request
parameters should be analysed in order to detect SQL Injection attacks. We call the pair
〈environment, attack techniques〉 the “context”. Among our tools, Sphinx performs
better than POSEIDON because it takes advantage of the knowledge of the syntax of
an HTTP request, the way web applications are developed, and the knowledge of (web)
attack techniques. The output of this phase is used to create an abstraction model during
the following phase.

Data Abstraction Because it is infeasible to store all valid inputs for later comparison
with a new incoming input, the system has to extract significant information from input
data in order to run its analysis, and abstract the information into a model. The abstraction
model has to 1) comprise unique/prominent features of (normal) inputs, 2) allow users to
perform modifications in order to change the system behaviour, 3) store information in an
efficient way, and 4) allow a verification function to determine in real time if a given input
is either normal or malicious. The abstraction model should also allow the verification
of future inputs as well, although this feature is difficult to achieve. Requirements 1) and
4) affect the effectiveness and the usability of the system. A model that does not abstract
prominent/unique input features is likely to show a low detection rate and a high false
alert rate (which impact on final users). The possibility to change the system behaviour is
a key component for users, especially in a (complex) enterprise environment.

In Chapter 2 we show that payload-based systems can detect the most harmful cyber-
attacks. We believe that the payload information is the most significant input source, and
it should be the first source taken into account (when applicable). POSEIDON employs
n-gram analysis, a technique which captures a good deal of information from the data pay-
load in a compact way, but which requires continuous updates to reflect the input changes.
However, it is impossible to remove from the model used by POSEIDON arbitrary data
(e.g., malicious traffic incorporated during the training). The behaviour of the POSEI-
DON detection engine can be modified only by changing the threshold value. These are
strict limitations for users. On the other hand, the positive signatures used by Sphinx al-
lows users to add/delete data processed during the training, and to modify the behaviour of
the detection engine. A positive signature not only models the current input, but to some
extent also the future input of the web application (thanks to the per-parameter analysis).
However, selecting a good abstraction for modelling the payload information is a time
consuming task. We have conducted several experiments using only a neural network (a
SOM) to detect attacks by analysing the payload of network packets. This approach fails
to achieve completeness and accuracy rates comparable to the performances achieved by
POSEIDON. Current neural networks fail to handle the packet payloads of modern net-
work applications, and tailored analysis to the application protocol (e.g., Sphinx) should
be preferred.

Diversification of Analysis A high quality (and quantity) of the input information is
usually not sufficient to cope with increasingly sophisticated new attacks. As we men-
tioned earlier in this section, attackers develop diverse techniques to exploit similar vul-
nerabilities. Hence, a single method of analysis is likely to be ineffective with some
attacks (or effective with some instances only). Therefore, it is not possible to develop an

101

Chapter 7. Concluding Remarks

“ultimate” detection algorithm that is suitable for any attack. However, the combination
of diverse analysis techniques can improve the overall detection. Kruegel et al. [73] em-
ploy several detection models to analyse HTTP requests and Sphinx differentiates HTTP
parameters into regular and irregular, and applies a different detection technique for each
parameter type.

Future Work
The results in this thesis open several possible future research directions:

• ATLANTIDES (Chapter 4) can be extended to include additional information to
make the detection of anomalies in the outgoing traffic more precise. This infor-
mation (e.g., the usual number of bytes sent back from the server and the com-
munication duration) could be included in the model and evaluated as well. The
architecture has been designed to work with TCP-based network services: although
it could be easily adapted to work with UDP-based services, there are some issues
related to this protocol. Since UDP is a connection-less protocol, this presents
some difficulties to distinguish real connections from the ones using spoofed IP
addresses.

• Sphinx (Chapter 5) detects data-flow attacks, i.e., attacks which exploit vulnera-
bilities in the way parameter content is handled by the web application. However,
we observe that work-flow attacks are becoming common [36]. This type of attack
exploits erroneous or inconsistent state management mechanisms inside the web
application, in order to bypass authentication and authorization checks. Because
the attack does not require to inject suspicious data, Sphinx cannot currently detect
such attacks.

• Panacea (Chapter 6) can use different algorithms to classify alerts. The bench-
marks with SVM and RIPPER, which approach the classification problem in two
different ways, show that each algorithm has its advantages and disadvantages, de-
pending on the circumstances. A possible extension is to use a cascade of SVM
and Ripper. We would then use SVM for early classification (when the number of
samples is low, and when RIPPER does not perform well), then, when the number
of alerts increases, we can train RIPPER, thanks to the batch training mode, and
use it for classification as well (RIPPER performs better than SVM when the num-
ber of training samples is high). By applying a voting schema to the classification
results provided by both algorithms for a given alert (for instance, by considering
the confidence value and the number of training samples in a certain class), we
might be able to increase the overall accuracy.

• Setting the threshold value is usually a trial-and-error task. We propose heuristics
(in Chapter 4) to set such values in a general way, so that users do not need to spend
too much time to tune threshold values. However, we have not verified whether this

102

approach is systematic or suitable only in the context of ATLANTIDES. Because
most anomaly-based IDSs require users to set up a threshold value or employ sim-
ilar mechanisms, more research would be needed to formalize this task (in order to
automate it, or at least make it less human-dependent).

Alongside with possible developments and improvements for the SilentDefense com-
ponents, there are a number of open issues related to anomaly-based intrusion detection
systems.

Training data sanitation As we mention in Chapter 2, the training data the IDS
engine uses to build the model is crucial to detect as many attacks as possible with a low
false alert rate. The “sanitation” of the training data set to remove noise and malicious
traffic is a time consuming task, and researchers have not fully addressed this topic to
automate it. Cretu et al. [37] present an approach to sanitize a training data set: they
employ what they call micro-models. The general idea behind this approach is that in
a training set spanning a sufficiently large time interval, an attack instance will appear
only in short time frames. A micro-model is an instance of the ABS model built during
a time frame. By using a voting scheme, authors eliminate models which are considered
anomalous, and use the remaining models to build the final detection model. However, this
approach present some drawbacks. First, during benchmarks, authors use 300 hours of
data to build micro-models: the authors do not benchmark the approach for shorter time,
thus it is unclear if that is the minimum amount of time requested to achieve significant
improvements. Should that be the case, a 300 hour training (almost 13 days) might not
be acceptable in certain contexts, where network data constantly changes (e.g., think of
a web application). Secondly, the main assumption the authors make is that a certain
attack instance will not appear (too) often in several micro-models. Think, for instance,
of certain malware software that performs requests to a web server for non-existent paths,
in order to generate a Denial of Service (we have observed this phenomenon during live
experiments in our network). Malicious payloads can be continuously injected for days,
hence a good deal of micro-models would be tainted and the sanitation could turn out to
be ineffective. Additional research is then needed for this topic.

Interaction with host-based intrusion detection systems However effective an
IDS is (be it either signature- or anomaly-based), false positives and negatives are always
possible. A combination of network- and host-based systems should be investigated in
order to enhance the overall detection (and prevention) of malicious events. So far, re-
search has mainly addressed the problem of correlating alerts generated by heterogeneous
systems. What we envisage is that, for certain attacks (e.g., buffer overflow), counter-
measures can be activated “on-demand” inside the targeted host. Think of systems like
Argos [102], which offer high-end protection but impact host performance. By being
able to activate the host-based IDS, the network-based IDS can use, e.g., a lower thresh-
old value, and let suspicious traffic flow to the targeted host where the host-based IDS
is now running. Then, based on the host-based IDS analysis, the suspicious activity can

103

Chapter 7. Concluding Remarks

be reported as an attack in case of a real threat (that the host-based IDS can also stop in
real-time).

Revisiting public data sets Testing the effectiveness of an intrusion detection engine
(and comparing it to other engines) is performed through benchmarks and using data sets.
The data sets put together by DARPA a decade ago are the only comprehensive public
source of network traffic to test anomaly-based detection engines. These data sets are out-
dated, when compared to the modern Internet, the data carried and the attack techniques
used. Thus, it is difficult for researchers to asses the real effectiveness of a new detection
engine. Due to privacy issues, there is no a public and comprehensive data set available
that represents the modern Internet traffic data, i.e., web application traffic, and the major
threats, i.e., malware, Cross-site Scripting and SQL Injection attacks. Hence, every re-
searcher needs to collect her own data set, whose “quality” (i.e., the diversity of data and
attacks) is not easy to evaluate, since most data sets are private and thereby not available
to a large audience. The collection of new modern data sets for testing purposes should
be a main goal of future research.

104

BIBLIOGRAPHY

Author References

Refereed Conferences

[1] D. Bolzoni, B. Crispo, and S. Etalle. ATLANTIDES: An Architecture for Alert
Verification in Network Intrusion Detection Systems. In LISA ’07: Proc. 21th
Large Installation System Administration Conference, pages 141–152. USENIX
Association, 2007. (Subsumed by Chapter 4 of this thesis).

[2] D. Bolzoni and S. Etalle. Boosting Web Intrusion Detection Systems by Inferring
Positive Signatures. In Confederated International Conferences On the Move to
Meaningful Internet Systems (OTM ’08), volume 5332 of LNCS, pages 938–955.
Springer, 2008. (Subsumed by Chapter 5 of this thesis).

[3] D. Bolzoni, S. Etalle, and P.H. Hartel. Panacea: Automating the Classification
of Attacks for Anomaly-based Network Intrusion Detection Systems. In RAID
’09: Proc. 12th Symposium on Recent Advances in Intrusion Detection, LNCS.
Springer, 2009. TO APPEAR. (Subsumed by Chapter 6 of this thesis).

[4] D. Bolzoni, E. Zambon, S. Etalle, and P.H. Hartel. POSEIDON: a 2-tier Anomaly-
based Network Intrusion Detection System. In IWIA ’06: Proc. 4th IEEE Interna-
tional Workshop on Information Assurance, pages 144–156. IEEE Computer Soci-
ety Press, 2006. (Subsumed by Chapter 3 of this thesis).

[5] X. Su, D. Bolzoni, and P. van Eck. Understanding and Specifying Information
Security Needs to Support the Delivery of High Quality Security Services. In SE-
CUREWARE ’07: Proc. International Conference on Emerging Security Informa-
tion, Systems, and Technologies, pages 107–114. IEEE Computer Society, 2007.

[6] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. A Model Supporting Business
Continuity Auditing & Planning in Information Systems. In ICIMP ’06: Proc.
2nd International Conference on Internet Monitoring and Protection, pages 33–
41. IEEE Computer Society, 2007.

Book Chapters

[7] D. Bolzoni and S. Etalle. Approaches in anomaly-based network intrusion de-
tection systems. In R. Di Pietro and L.V. Mancini, editors, Intrusion Detection
Systems, volume 38 of Advances in Information Security, pages 1–15. Springer,
2008. (Subsumed by Chapter 2, Sections 2.3.1 and 2.3.2 of this thesis).

105

BIBLIOGRAPHY

International Workshops
[8] X. Su, D. Bolzoni, and P. A. T. van Eck. A Business Goal Driven Approach for

Understanding and Specifying Information Security Requirements. In EMMSAD
’06: Proc. 11th International Workshop on Exploring Modeling Methods in Sys-
tems Analysis and Design, pages 465–472. Presses Universitaries de Namur, 2006.

[9] X. Su, D. Bolzoni, and P. A. T. van Eck. Specifying Information Security Needs
for the Delivery of High Quality Security Services (poster session). In BDIM ’07:
Proc. 2nd IEEE/IFIP International Workshop on Business-Driven IT Management,
pages 112–113. IEEE Computer Society, 2007.

[10] E. Zambon, D. Bolzoni, S. Etalle, and M. Salvato. Model-based mitigation of
availability risks. In BDIM ’07: Proc. 2nd IEEE/IFIP International Workshop on
Business-Driven IT Management, pages 75–83. IEEE Computer Society, 2007.

106

BIBLIOGRAPHY

General References
[11] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner. State of the

practice of intrusion detection technologies. Technical Report CMU/SEI-99TR-
028, Carnegie-Mellon University - Software Engineering Institute, jan 2000.

[12] M. Almgren, H. Debar, and M. Dacier. A lightweight tool for detecting web server
attacks. In NDSS ’00: Proc. 7th ISOC Symposium on Network and Distributed
Systems Security, 2000.

[13] M. Almgren and U. Lindqvist. Application-integrated data collection for security
monitoring. In RAID ’01: Proc. 4th Symposium on Recent Advances in Intrusion
Detection, volume 2212 of LNCS, pages 22–36. Springer, 2001.

[14] J.P. Anderson. Computer Security Threat Monitoring and Surveillance. Technical
report, James P. Anderson Co., Fort Washington, PA, April 1980.

[15] D. Andersson, M. Fong, and A. Valdes. Heterogeneous Sensor Correlation: A Case
Study of Live Traffic Analysis, 2002.

[16] S. Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security, 3(3):186–205, 2000.

[17] S. Axelsson. Intrusion Detection Systems: A Survey and Taxonomy. Technical
Report 99-15, Chalmers University, mar 2000.

[18] R. Bace. Intrusion detection. Macmillan Publishing Co., Inc., 2000.

[19] D. Balzarotti, M. Cova, V.V. Felmetsger, and G. Vigna. Multi-Module Vulnerabil-
ity Analysis of Web-based Applications. In CCS ’07: Proc. 14th ACM Conference
on Computer and Communication Security, pages 25–35. ACM Press, 2007.

[20] D. Barbará, J. Couto, S. Jajodia, and N. Wu. ADAM: a testbed for exploring the
use of data mining in intrusion detection. SIGMOD Record, 30(4):15–24, 2001.

[21] D. Barbará, J. Couto, S. Jajodia, and N. Wu. ADAM: Detecting Intrusions by Data
Mining. In IAW ’01: Proc. 2nd IEEE SMC Information Assurance Workshop, 2001.

[22] D. Barbará, J. Couto, S. Jajodia, and N. Wu. Detecting Novel Network Intrusions
using Bayes Estimators. In SIAM ’01: Proc. 1st SIAM International Conference
on Data Mining, 2001. http://www.siam.org/meetings/sdm01/pdf/
sdm01_29.pdf (last accessed: April 2009).

[23] S.D. Bay, D. Kibler, M.J. Pazzani, and P. Smyth. The UCI KDD archive of large
data sets for data mining research and experimentation. SIGKDD Exploration:
Newsletter of SIGKDD and Data Mining, 2(2):81–85, 2000.

107

http://www.siam.org/meetings/sdm01/pdf/sdm01_29.pdf
http://www.siam.org/meetings/sdm01/pdf/sdm01_29.pdf

BIBLIOGRAPHY

[24] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7):422–426, 1970.

[25] R.M. Bolle, J.H. Connell, S. Pankanti, N.K. Ratha, and A.W. Senior. Guide to
Biometrics. Springer, 2003.

[26] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal mar-
gin classifiers. In Proc. 5th Annual ACM Workshop on Computational Learning
Theory, pages 144–152. ACM Press, 1992.

[27] J.D. Cannady. Artificial neural networks for misuse detection. In NISSC ’98:
Proc. 21st National Information Systems Security Conference, pages 443–456,
1998.

[28] J.D. Cannady. An adaptive neural network approach to intrusion detection and
response. PhD thesis, Nova Southeastern University, 2000.

[29] J.D. Cannady. Next Generation Intrusion Detection: Autonomous Reinforcement
Learning of Network Attacks. In NISSC ’00: Proc. 23rd National Information Sys-
tems Security Conference, 2000. http://csrc.nist.gov/nissc/2000/
proceedings/papers/033.pdf (last accessed: April 2009).

[30] D.J. Chaboya, R.A. Raines, R.O. Baldwin, and B.E. Mullins. Network Intrusion
Detection: Automated and Manual Methods Prone to Attack and Evasion. IEEE
Security and Privacy, 4(6):36–43, 2006.

[31] S.P. Chung and A.K. Mok. Allergy Attack Against Automatic Signature Gener-
ation. In RAID ’06: Proc. 9th International Symposium on Recent Advances in
Intrusion Detection, volume 4219 of LNCS, pages 61–80. Springer, 2006.

[32] S.P. Chung and A.K. Mok. Advanced Allergy Attacks: Does a Corpus Really
Help? In RAID ’07: Proc. 10th International Symposium on Recent Advances in
Intrusion Detection, volume 4637 of LNCS, pages 42–62. Springer, 2007.

[33] C. Clifton and G. Gengo. Developing custom intrusion detection filters using data
mining. In MILCOM ’00: Proc. 21st Century Military Communications Confer-
ence, volume 1, pages 440–443. IEEE Computer Society Press, 2000.

[34] W.W. Cohen. Fast effective rule induction. In Proc. 12th International Conference
on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[35] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham.
Vigilante: end-to-end containment of Internet worms. In SOSP ’05: Proc. 20th
ACM Symposium on Operating Systems Principles, pages 133–147. ACM Press,
2005.

108

http://csrc.nist.gov/nissc/2000/proceedings/papers/033.pdf
http://csrc.nist.gov/nissc/2000/proceedings/papers/033.pdf

BIBLIOGRAPHY

[36] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna. Swaddler: An approach for
the anomaly-based detection of state violations in web applications. In RAID ’07:
Proc. 10th International Symposium on Recent Advances in Intrusion Detection,
volume 4637 of LNCS, pages 63–86. Springer, 2007.

[37] G.F. Cretu, A. Stavrou, M.E. Locasto, S.J. Stolfo, and A.D. Keromytis. Casting out
Demons: Sanitizing Training Data for Anomaly Sensors. In S&P ’08: Proc. 29th
IEEE Symposium on Security and Privacy, pages 81–95. IEEE Computer Society
Press, 2008.

[38] F. Cuppens and R. Ortalo. LAMBDA: A Language to Model a Database for De-
tection of Attacks. In RAID ’00: Proc. 3rd International Symposium on Recent
Advances in Intrusion Detection, pages 197–216. Springer, 2000.

[39] O. Dain and R. Cunningham. Fusing Heterogeneous Alert Streams into Scenarios.
In Proc. Workshop on Data Mining for Security Applications, 8th ACM Conference
on Computer Security (CCS’ 01), pages 1–13. ACM Press, 2002.

[40] M. Damashek. Gauging similarity with n-grams: Language-independent catego-
rization of text. Science, 267(5199):843–848, 1995.

[41] H. Debar, D. Curry, and B. Feinstein. The intrusion detection message exchange
format (IDMEF). RFC 4765, 2007.

[42] H. Debar, M. Dacier, and A. Wespi. Towards a Taxonomy of Intrusion-Detection
Systems. Computer Networks, 31(8):805–822, 1999.

[43] H. Debar, M. Dacier, and A. Wespi. A Revised Taxonomy of Intrusion-Detection
Systems. Annales des Télécommunications, 55(7–8):361–378, 2000.

[44] H. Debar and A. Wespi. Aggregation and Correlation of Intrusion-Detection Alerts.
In RAID ’00: Proc. 4th International Symposium on Recent Advances in Intrusion
Detection, pages 85–103. Springer, 2001.

[45] D.E. Denning. An Intrusion-Detection Model. IEEE Transactions on Software
Engineering, SE-13(2):222–232, February 1987.

[46] M.O. Depren, M. Topallar, E. Anarim, and K. Ciliz. Network Based Anomaly
Intrusion Detection using Self Organizing Maps. In SIU ’04: Proc. 12th IEEE
National Conference on Signal Processing and Applications, pages 76–79, 2004.

[47] S.C. Evans, S.F. Bush, and J. Hershey. Information assurance through kolmogorov
complexity. In DISCEX ’00: Proc. DARPA Information Survivability Conference
and Exposition II, volume 2, pages 322–331, 2001.

[48] H. Fernau. Algorithms for Learning Regular Expressions. In ALT ’05: Proc. 16th
International Conference on Algorithmic Learning Theory, volume 3734 of LCNS.
Springer, 2005.

109

BIBLIOGRAPHY

[49] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1, 1999.

[50] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic blending
attacks. In Proc. 15th USENIX Security Symposium, pages 241–256. USENIX
Association, 2006.

[51] S. Forrest and S.A. Hofmeyr. A Sense of Self for Unix Processes. In S&P ’96:
Proc. 17th IEEE Symposium on Security and Privacy, pages 120–128. IEEE Com-
puter Society Press, 2002.

[52] S. Goel and S.F. Bush. Kolmogorov complexity estimates for detection of viruses in
biologically inspired security systems: a comparison with traditional approaches.
Complex., 9(2):54–73, 2003.

[53] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley. Worm Detection, Early
Warning and Response Based on Local Victim Information. In ACSAC ’04: Proc.
20th Annual Computer Security Applications Conference, pages 136–145. IEEE
Computer Society, 2004.

[54] S. Hansman and R. Hunt. A taxonomy of network and computer attacks. Comput-
ers & Security, 24(1):31–43, 2004.

[55] A. Hinneburg, C.C. Aggarwal, and D.A. Keim. What Is the Nearest Neighbor in
High Dimensional Spaces? In VLDB ’00: Proc. 26th International Conference on
Very Large Data Bases, pages 506–515. Morgan Kaufmann, 2000.

[56] J.D. Howard. An analysis of security incidents on the Internet 1989-1995. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1998.

[57] K.L. Ingham and H. Inoue. Comparing Anomaly Detection Techniques for HTTP.
In RAID ’07: Proc. 10th International Symposium on Recent Advances in Intrusion
Detection, volume 4637 of LNCS, pages 42–62. Springer, 2007.

[58] K.L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning DFA representa-
tions of HTTP for protecting web applications. Computer Networks: The Inter-
national Journal of Computer and Telecommunications Networking, 51(5):1239–
1255, 2007.

[59] H.S. Javitz and A. Valdes. The NIDES Statistical Component Description and
Justification. Technical Report A010, SRI, 1994.

[60] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: s Static Analysis Tool for Detecting
Web Application Vulnerabilities. In S&P ’06: Proc. 26th IEEE Symposium on
Security and Privacy, pages 258–263. IEEE Computer Society, 2006.

[61] K. Julisch. Mining Alarm Clusters to Improve Alarm Handling Efficiency. In
ACSAC ’01: Proc. 17th Annual Computer Security Applications Conference, pages
12–21. ACM Press, 2001.

110

BIBLIOGRAPHY

[62] K. Julisch. Data Mining for Intrusion Detection: A Critical Review. Research
Report RZ 3398, IBM Zurich Research Laboratory, 8803 Ruschlikon, Switzerland,
February 2002.

[63] K. Julisch. Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Security, 6(4):443–471, 2003.

[64] C. Kahn, P.A. Porras, S. Staniford-Chen, and B. Tung. A common intrusion detec-
tion framework. Journal of Computer Security, 1998.

[65] H. Kim and B. Karp. Autograph: Toward Automated, Distributed Worm Signature
Detection. In Proc. 13th USENIX Security Symposium, pages 271–286. USENIX
Association, 2004.

[66] D.V. Klein. Defending Against the Wily Surfer-Web-based Attacks and Defenses.
In Proc. Workshop on Intrusion Detection and Network Monitoring, pages 81–92.
USENIX Association, 1999.

[67] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information
Sciences. Springer, 1995. (Second Extended Edition 1997).

[68] C. Kreibich and J. Crowcroft. Honeycomb: creating intrusion detection signa-
tures using honeypots. SIGCOMM Computer Communication Review, 34(1):51–
56, 2004.

[69] C. Kruegel and W. Robertson. Alert Verification: Determining the Success of Intru-
sion Attempts. In DIMVA ’04: Proc. 1st Workshop on the Detection of Intrusions
and Malware and Vulnerability Assessment, 2004.

[70] C. Kruegel and T. Toth. Using Decision Trees to Improve Signature-based Intrusion
Detection. In RAID ’03: Proc. 6th Symposium on Recent Advances in Intrusion
Detection, volume 2820 of LNCS, pages 173–191. Springer, 2003.

[71] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for network
intrusion detection. In SAC ’02: Proc. 2002 ACM Symposium on Applied Comput-
ing, pages 201–208. ACM Press, 2002.

[72] C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks. In CCS’03:
Proc. 10th ACM Conference on Computer and Communications Security, pages
251–261, 2003.

[73] C. Kruegel, G. Vigna, and W. Robertson. A multi-model approach to the detection
of web-based attacks. Computer Networks, 48(5):717–738, 2005.

[74] K. Labib and V.R. Vemuri. NSOM: A Tool to Detect Denial of Service Attacks
Using Self-organizing Maps. Technical report, University of California, Davis,
2002. http://ailab.das.ucdavis.edu/˜klabib/docs/nsom1.9.
final.pdf (last accessed: April 2009).

111

http://ailab.das.ucdavis.edu/~klabib/docs/nsom1.9.final.pdf
http://ailab.das.ucdavis.edu/~klabib/docs/nsom1.9.final.pdf

BIBLIOGRAPHY

[75] B.W. Lampson. Computer Security in the Real World. Computer, 37(6):37–46,
2004.

[76] W. Lee. A data mining framework for constructing features and models for intru-
sion detection systems. PhD thesis, Columbia University, New York, NY, USA,
1999.

[77] W. Lee, W. Fan, M. Miller, S.J. Stolfo, and E. Zadok. Toward cost-sensitive model-
ing for intrusion detection and response. Journal of Computer Security, 10(1-2):5–
22, 2002.

[78] W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In Proc. 7th
USENIX Security Symposium, pages 79–94. USENIX Association, 1998.

[79] W. Lee and S.J. Stolfo. A Framework for Constructing Features and Models for In-
trusion Detection Systems. ACM Transactions on Information and System Security,
3(4):227–261, 2000.

[80] W. Lee, S.J. Stolfo, and K.W. Mok. A Data Mining Framework for Building Intru-
sion Detection Models. In S&P ’99: Proc. 20th IEEE Symposium on Security and
Privacy, pages 120–132. IEEE Computer Society Press, 1999.

[81] R.P. Lippmann, R.K. Cunningham, D.J. Fried, S.L. Garfinkel, A.S. Gorton, I.
Graf, K.R. Kendall, D.J. McClung, D.J. Weber, S.E. Webster, and M.A.Z̃issman
D.W̃yschogrod. The 1998 DARPA/AFRL off-line intrusion detection evaluation.
In RAID ’98: Proc. 1st International Workshop on the Recent Advances in Intru-
sion Detection, 1998.

[82] R.P. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S.
Webster, D. Wyschogrod, R. Cunningham, and M. Zissman. Evaluating Intrusion
Detection Systems: the 1998 DARPA Off-line Intrusion Detection Evaluation. In
DISCEX ’00: Proc. 1st DARPA Information Survivability Conference and Exposi-
tion, volume 2, pages 12–26. IEEE Computer Society Press, 2000.

[83] R.P. Lippmann, J.W. Haines, D.J. Fried, J. Korba, and K. Das. The 1999 DARPA
off-line intrusion detection evaluation. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 34(4):579–595, 2000.

[84] M.V. Mahoney and P.K. Chan. Learning non-stationary models of normal network
traffic for detecting novel attacks. In KDD ’02: Proc. 8th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data mining, pages 376–385.
ACM Press, 2002.

[85] M.V. Mahoney and P.K. Chan. An Analysis of the 1999 DARPA/Lincoln Labo-
ratory Evaluation Data for Network Anomaly Detection. In RAID ’03: Proc. 6th
Symposium on Recent Advances in Intrusion Detection, volume 2820 of LNCS,
pages 220–237. Springer, 2003.

112

BIBLIOGRAPHY

[86] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz. A Data Mining Analysis
of RTID Alarms. Computer Networks: The International Journal of Computer and
Telecommunications Networking, 34(4):571–577, 2000.

[87] J. McHugh. Testing Intrusion Detection Systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Transactions on Information and System Security, 3(4):262–294, 2000.

[88] D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neu-
rocomputing, 55(1-2):169–186, 2003.

[89] B. Morin, L. Mé, H. Debar, and M. Ducassé. M2D2: A Formal Data Model for
IDS Alert Correlation. In RAID ’02: Proc. 5th Symposium on Recent Advances in
Intrusion Detection, volume 2516 of LNCS, pages 115–127. Springer, 2002.

[90] P.G. Neumann and P.A. Porras. EMERALD: Event monitoring enabling responses
to anomalous live disturbances. In NCSC ’97: Proc. 20th NIST National Informa-
tion Systems Security Conference, pages 353–365, 1997.

[91] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically Generating Sig-
natures for Polymorphic Worms. In S&P ’05: Proc. 25th IEEE Symposium on
Security and Privacy, pages 226–241. IEEE Computer Society, 2005.

[92] B.V. Nguyen. Self Organizing Map (SOM) for Anomaly Detection. Technical
report, Ohio University, 2002.

[93] J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., 1995.

[94] P. Ning and Y. Cui. An Intrusion Alert Correlator Based on Prerequisites of Intru-
sions. Technical Report TR-2002-01, North Carolina State University, 26 2002.

[95] P. Ning, Y. Cui, and D. Reeves. Analyzing intensive intrusion alerts via correlation.
In RAID ’02: Proc. 5th Symposium on Recent Advances in Intrusion Detection,
volume 2516 of LNCS, pages 74–94. Springer, 2002.

[96] P. Ning, Y. Cui, and D.S. Reeves. Constructing attack scenarios trough correlation
of intrusion alerts. In CCS ’02: Proc. 9th ACM Conference on Computer and
Communication Security, pages 245–254. ACM Press, 2002.

[97] P. Ning, Y. Cui, D.S. Reeves, and D. Xu. Techniques and tools for analyzing
intrusion alerts. ACM Transactions on Information and System Security, 7(2):274–
318, 2004.

[98] P. Ning, D. Reeves, and Y. Cui. Correlating Alerts Using Prerequisites of Intru-
sions. Technical Report TR-2001-13, North Carolina State University, 13 2001.

[99] P. Ning and D. Xu. Learning attack strategies from intrusion alerts. In CCS ’03:
Proc. 10th ACM conference on Computer and Communications Security, pages
200–209. ACM Press, 2003.

113

BIBLIOGRAPHY

[100] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23-24):2435–2463, 1999.

[101] T. Pietraszek. Using Adaptive Alert Classification to Reduce False Positives in
Intrusion Detection. In RAID ’04: Proc. 7th Symposium on Recent Advances in
Intrusion Detection, volume 3224 of LNCS, pages 102–124. Springer, 2004.

[102] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprint-
ing zero-day attacks for advertised honeypots with automatic signature generation.
SIGOPS Oper. Syst. Rev., 40(4):15–27, 2006.

[103] Niels Provos. A Virtual Honeypot Framework. In Proc. 13th USENIX Security
Symposium, pages 1–14. USENIX Association, 2004.

[104] T.H. Ptacek and T.N. Newsham. Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection. Technical report, Secure Networks, Inc., 1998.

[105] M. Ramadas, S. Ostermann, and B.C. Tjaden. Detecting Anomalous Network Traf-
fic with Self-Organizing Maps. In RAID ’03: Proc. 6th Symposium on Recent
Advances in Intrusion Detection, volume 2820 of LNCS, pages 36–54. Springer,
2003.

[106] W. Robertson, G. Vigna, C. Kruegel, and R.A. Kemmerer. Using generalization
and characterization techniques in the anomaly-based detection of web attacks.
In NDSS ’06: Proc. 13th ISOC Symposium on Network and Distributed Systems
Security, 2006.

[107] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In LISA
’99: Proc. 13th USENIX Conference on System Administration, pages 229–238.
USENIX Association, 1999.

[108] R.S. Sandhu and P. Samarati. The computer science and engineering handbook. In
Authentication, Access Controls, and Intrusion Detection, pages 1929–1948. CRC
Press, 1997.

[109] R. Sommer and V. Paxson. Enhancing byte-level network intrusion detection sig-
natures with context. In CCS ’03: Proc. 10th ACM conference on Computer and
Communications Security, pages 262–271. ACM Press, 2003.

[110] Y. Song, S.J. Stolfo, and A.D. Keromytis. Spectrogram: A Mixture-of-Markov-
Chains Model for Anomaly Detection in Web Traffic. In NDSS ’09: Proc. 16th
ISOC Symposium on Network and Distributed Systems Security, 2009.

[111] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated detection
of stealthy portscans. Journal of Computer Security, 10(1-2):105–136, 2002.

114

BIBLIOGRAPHY

[112] A.D. Todd, R.A. Raines, R.O. Baldwin, B.E. Mullins, and S.K. Rogers. Alert
verification evasion through server response forging. In RAID ’07: Proc. 10th
Symposium on Recent Advances in Intrusion Detection, volume 4637 of LNCS,
pages 256–275. Springer, 2007.

[113] F. Valeur, G. Vigna, C. Kruegel, and R.A. Kremmerer. A comprehensive approach
to intrusion detection alert correlation. IEEE Trans. Dependable Secur. Comput.,
1(3):146–169, 2004.

[114] H.L. van Trees. Detection, Estimation and Modulation Theory. Part I: Detection,
Estimation, and Linear Modulation Theory. John Wiley and Sons, Inc., 1968.

[115] V.N. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24, 1963.

[116] G. Vigna, W.K. Robertson, and D. Balzarotti. Testing network-based intrusion de-
tection signatures using mutant exploits. In CCS ’04: Proc. 11th ACM Conference
on Computer and Communications Security, pages 21–30. ACM Press, 2004.

[117] D. Wagner and D. Dean. Intrusion Detection via Static Analysis. In S&P ’01:
Proc. 22nd IEEE Symposium on Security and Privacy, page 156. IEEE Computer
Society, 2001.

[118] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection sys-
tems. In CCS ’02: Proc. 9th ACM conference on Computer and Communications
Security, pages 255–264. ACM, 2002.

[119] K. Wang, G. Cretu, and S.J. Stolfo. Anomalous Payload-based Worm Detection
and Signature Generation. In RAID ’05: Proc. 8th International Symposium on
Recent Advances in Intrusion Detection, volume 3858 of LNCS, pages 227–246.
Springer, 2006.

[120] K. Wang, J.J. Parekh, and S.J. Stolfo. Anagram: a Content Anomaly Detector
Resistant to Mimicry Attack. In RAID ’06: Proc. 9th International Symposium on
Recent Advances in Intrusion Detection, volume 4219 of LNCS, pages 226–248.
Springer, 2006.

[121] K. Wang and S.J. Stolfo. Anomalous Payload-Based Network Intrusion Detection.
In RAID ’04: Proc. 7th Symposium on Recent Advances in Intrusion Detection,
volume 3224 of LNCS, pages 203–222. Springer, 2004.

[122] R. Werlinger, K. Hawkey, K. Muldner, P. Jaferian, and K. Beznosov. The chal-
lenges of using an intrusion detection system: is it worth the effort? In SOUPS
’08: Proc. 4th Symposium on Usable Privacy and Security, pages 107–118. ACM
Press, 2008.

115

BIBLIOGRAPHY

[123] K. Yamanishi, J. Takeuchi, G.J. Williams, and P. Milne. On-line unsupervised out-
lier detection using finite mixtures with discounting learning algorithms. In KDD
’00: Proc. 6th ACM SIGKDD international conference on Knowledge Discovery
and Data Mining, pages 320–324. ACM Press, 2000.

[124] S. Zanero. Analyzing TCP Traffic Patterns using Self Organizing Maps. In ICIAP
’05: Proc. 13th International Conference on Image Analysis and Processing, vol-
ume 3617 of LNCS, pages 83–90. Springer, 2005.

[125] S. Zanero and S.M. Savaresi. Unsupervised learning techniques for an intrusion
detection system. In SAC ’04: Proc. 19th Annual ACM Symposium on Applied
Computing, pages 412–419. ACM Press, 2004.

[126] J. Zhou, A.J. Carlson, and M. Bishop. Verify Results of Network Intrusion Alerts
Using Lightweight Protocol Analysis. In ACSAC ’05: Proc. 21st Annual Computer
Security Applications Conference, pages 117–126. IEEE Computer Society, 2005.

[127] H. Zimmermann. OSI Reference Model – The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications, 28(4):425–432,
1980.

Web References (Last Accessed: April 2009)
[128] Breach Security. ModSecurityTM. http://www.modsecurity.org.

[129] CERT. Vulnerability in NCSA/Apache CGI example code. Technical report,
CERT Coordination Center, 1996. http://www.cert.org/advisories/
CA-1996-06.html.

[130] CERT. IP Denial of Service Attacks. Technical report, CERT Coordination Center,
1997. http://www.cert.org/advisories/CA-1997-28.html.

[131] Check Point Software Technologies. Stateful Inspection Technology, 2005.
http://www.checkpoint.com/products/downloads/Stateful_
Inspection.pdf.

[132] CIRT.net. Nikto web scanner. http://www.cirt.net/nikto2.

[133] DEFCON8. Defcon Capture the Flag (CTF) contest, 2000. http://www.
defcon.org/html/defcon-8/defcon-8-post.html.

[134] SANS Institute – Internet Storm Center web site. http://isc.sans.org/
index.php?on=toptrends.

[135] Milw0rm. http://milw0rm.com.

116

http://www.modsecurity.org
http://www.cert.org/advisories/CA-1996-06.html
http://www.cert.org/advisories/CA-1996-06.html
http://www.cert.org/advisories/CA-1997-28.html
http://www.checkpoint.com/products/downloads/Stateful_Inspection.pdf
http://www.checkpoint.com/products/downloads/Stateful_Inspection.pdf
http://www.cirt.net/nikto2
http://www.defcon.org/html/defcon-8/defcon-8-post.html
http://www.defcon.org/html/defcon-8/defcon-8-post.html
http://isc.sans.org/index.php?on=toptrends
http://isc.sans.org/index.php?on=toptrends
http://milw0rm.com

BIBLIOGRAPHY

[136] The University of Waikato. Weka 3: Data Mining Software in Java. http://
www.cs.waikato.ac.nz/ml/weka/.

[137] Open Source Security Information Management (OSSIM). http://www.
ossim.net.

[138] PostNuke. PostNuke Content Managament System. http://www.postnuke.
com/.

[139] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing. http://www.R-project.
org.

[140] Supervisory control and data acquisition. http://en.wikipedia.org/
wiki/SCADA.

[141] Tenable Network Security. Nessus Vulnerabilty Scanner. http://www.
nessus.org/.

[142] Security Reason. PostNuke Input Validation Error, 2005. http://
securitytracker.com/alerts/2005/May/1014066.html.

[143] Sourcefire. Snort Network Intrusion Detection System web site. http://www.
snort.org.

[144] Symantec Corporation. Internet Security Threat Report, 2008. http://www.
symantec.com/enterprise/threatreport/index.jsp.

[145] Snort Team. Snort user manual. http://www.snort.org/docs/snort_
htmanuals/htmanual_2832/node220.html.

[146] The Honeynet Project. Sebek. http://www.honeynet.org/project/
sebek/.

[147] The MITRE Corporation. Common Vulnerabilities and Exposures database.
http://cve.mitre.org.

[148] The Open Web Application Security Project. OWASP Top Ten Most Criti-
cal Web Application Security Vulnerabilities. http://www.owasp.org/
index.php/OWASP_Top_Ten.

[149] Web Application Security Consortium. Web Security Threat Classification.
http://www.webappsec.org/projects/threat/.

117

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.ossim.net
http://www.ossim.net
http://www.postnuke.com/
http://www.postnuke.com/
http://www.R-project.org
http://www.R-project.org
http://en.wikipedia.org/wiki/SCADA
http://en.wikipedia.org/wiki/SCADA
http://www.nessus.org/
http://www.nessus.org/
http://securitytracker.com/alerts/2005/May/1014066.html
http://securitytracker.com/alerts/2005/May/1014066.html
http://www.snort.org
http://www.snort.org
http://www.symantec.com/enterprise/threatreport/index.jsp
http://www.symantec.com/enterprise/threatreport/index.jsp
http://www.snort.org/docs/snort_htmanuals/htmanual_2832/node220.html
http://www.snort.org/docs/snort_htmanuals/htmanual_2832/node220.html
http://www.honeynet.org/project/sebek/
http://www.honeynet.org/project/sebek/
http://cve.mitre.org
http://www.owasp.org/index.php/OWASP_Top_Ten
http://www.owasp.org/index.php/OWASP_Top_Ten
http://www.webappsec.org/projects/threat/

Samenvatting

Intrusion detection systemen (IDS) zijn algemeen bekend en een breed in te zetten
beveiligingshulpmiddel voor het opsporen van cyberaanvallen en schadelijke activiteiten
in computersystemen en netwerken.

Een IDS op basis van patronen (signature) werkt vergelijkbaar met anti-virus soft-
ware. Het heeft een database van bekende aanvallen, en een succesvolle match met de
huidige invoer veroorzaakt een alarmsignaal. Een IDS op basis van patronen kan geen
onbekende aanvallen detecteren, hetzij omdat de database is verlopen of omdat er nog
geen patroon beschikbaar is.

Om deze beperking te ondervangen, hebben onderzoekers een IDS op basis van afwi-
jking (anomaly detection) ontwikkeld. Een IDS op basis van afwijking werkt door het
bouwen van een model met normale data/gebruik van patronen, vervolgt door het vergeli-
jken van de huidige invoer met het model (gebruik makend van een metrische overeenkomst).
Een significant verschil is dan gemarkeerd als afwijking. Een IDS op basis van afwijking
is in staat om eerder onbekende (of modificatie van bekende) aanvallen te detecteren zodra
ze plaatsvinden, d.w.z. zero-day aanvallen.

Cyberaanvallen en schendingen van informatiebeveiligingen lijken in frequentie en
met impact toe te nemen. Het is aannemelijk dat een IDS op basis van patronen een
steeds groter deel van de pogingen tot aanval mist, aangezien cyberaanvallen diversifiëren.
Je zou dus verwachten dat een groot aantal IDSen op basis van afwijkingen zijn ingezet
voor het opsporen van de nieuwste ontwrichtende aanvallen. Echter, de meeste IDSen die
vandaag de dag worden gebruikt zijn op basis van patronen, en er zijn maar enkele IDSen
op basis van afwijkingen ingezet in productieomgevingen.

Tot nu toe is een IDS op basis van patronen gemakkelijk te implementeren en een-
voudiger te configureren en te onderhouden dan een IDS op basis van een afwijking,
d.w.z. het is gemakkelijker en minder kostbaar in gebruik. We zien in deze beperkingen
de belangrijkste reden waarom systemen op basis van afwijkingen niet op grote schaal
zijn ingezet, ondanks het onderzoek dat voor meer dan een decennium is uitgevoerd.

Om deze beperkingen aan te pakken hebben wij SilentDefense ontwikkeld, een uitvo-
ering op basis van anomaly intrusion detection architecture die beter presteert dan con-

currenten. Niet alleen in termen van aanvallen detectie en vals alarm percentage, maar
het kost de gebruiker ook minder inspanning. Verschillende geı̈ntegreerde componenten
vormen de architectuur van SilentDefense: elk component kan zelfstandig werken, maar
ze kunnen ook worden aangesloten op verschillende configuraties om diverse (geautoma-
tiseerde) faciliteiten aan te bieden aan gebruikers wat de inspanning vermindert. In het
bijzonder, SilentDefense:

• Verbetert het bekende algoritme PAYL (voor het http protocol, van 90% tot 100%
detectie percentage en van 0,17% tot 0,0016% vals alarm percentage) door toevoeg-
ing van een neuraal netwerk dat netwerkverkeer voorbewerkt;

• Vermindert het aantal vals positieve meldingen (tussen 50% en 100% minder meldin-
gen) door het correleren van meldingen die gegenereerd worden door een Intrusion
Detection System (hetzij op basis van patronen of afwijkingen) die controleert op
het inkomende verkeer met een contentbased analyse van uitgaand verkeer;

• Genereert automatisch de regelmatig te valideren inkomende http-verzoeken, voor
gebruikers om de op basis van afwijking detection engine te kunnen tunen;

• Automatiseert de rangschikking van de meldingen op basis van afwijking door de
extractie van de lading van eerdere signaleringen, die kunnen worden ingedeeld
met behulp van zowel standaard als user-defined taxonomies.

SilentDefense is de eerste die een systematische poging doet om een intrusion detec-
tion system op basis van afwijking met een hoge mate van gebruikersvriendelijkheid te
ontwikkelen. Echter, SilentDefense (en in het algemeen detectie op basis van afwijking)
is geen alternatief voor systemen op basis van patronen. In feite zijn wij van mening dat
de beste kans om een aanval op te sporen, gebeurd door middel van een combinatie van de
twee benaderingen. Een systeem op basis van patronen werkt beter voor bekende appli-
caties en systemen (bijvoorbeeld de Windows-besturingssystemen) terwijl SilentDefense
zero-day en gerichte aanvallen kan opsporen. De laatste aanval doelt gewoonlijk op maat
ontwikkelde software, zoals webapplicaties ontwikkelt door ondernemingen voor interne
gebruikers of particuliere systemen die worden gebruikt in kritische infrastructuren.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-03

H. Gao. Design and Verification of Lock-
free Parallel Algorithms. Faculty of Math-
ematics and Computing Sciences, RUG.
2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita. Scenario-Based System Ar-
chitecting - A Systematic Approach to De-
veloping Future-Proof System Architec-
tures. Faculty of Mathematics and Com-
puting Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech-
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network
Reliability. Faculty of Science, UU. 2005-
09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Pop-
ulations in Dynamic Environments. Fac-
ulty of Biomedical Engineering, TU/e.
2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes-
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Re-
lations. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Structural
Operational Semantics. Faculty of Math-
ematics and Computer Science, TU/e.
2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation
of Source Code by Parsing and Rewriting.

Faculty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor networks:
energy-efficient attack and defense. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Compo-
sitionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-
brid Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Science,
Mathematics and Computer Science, RU.
2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science, RU.
2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics
and Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implementa-
tion and Composition. Faculty of Mathe-
matics and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormalities
in Locally Autonomous Distributed Sys-
tems. Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-
06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics and
Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty
of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.

Faculty of Natural Sciences, Mathematics,
and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Math-
ematics and Computer Science, TU/e.
2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Mathe-
matics and Computer Science, RU. 2008-
02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech

Multi-disciplinary Systems. Faculty of
Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and As-
similation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2008-13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and
Commitments. Faculty of Science, Mathe-

matics and Computer Science, RU. 2008-
14

P. E. A. Dürr. Resource-based Verifica-
tion for Robust Composition of Aspects.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechani-
cal Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream Pro-
cessing Systems. Faculty of Mathematics
and Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty of
Mathematics and Natural Sciences, UL.
2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Natural
Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting
and Its Certification. Faculty of Math-
ematics and Computer Science, TU/e.
2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Develop-
ment. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Performance
Evaluation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science, RU.
2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-
ing Techniques. Faculty of Mathematics
and Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-
based Single-page Web Applications. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready for

Prime Time. Faculty of Science, UU.
2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2009-14

	Introduction
	Motivation
	Running a signature-based IDS
	Running an anomaly-based IDS

	Research Question
	Thesis Overview
	Conclusion and Outlook

	Taxonomy of Intrusion Detection Systems
	Host- or Network-based Systems
	Host-based Systems
	Network-based Systems
	Honeypots

	Signature- or Anomaly-based Systems
	Signature-based Systems
	Anomaly-based Systems

	State-of-the-art of Anomaly-based Intrusion Detection Systems
	Classification of Anomaly-based Network Intrusion Detection Systems
	Payload- vs Header-based Approaches
	Building the Model
	Similarity Metric

	Conclusion

	POSEIDON: a 2-tier Anomaly-based Network Intrusion Detection System
	Architecture
	SOM Classification Model
	PAYL Classification Model
	POSEIDON

	Tuning and Benchmarks
	Benchmarks

	Related Work
	Conclusion

	ATLANTIDES: an Architecture for Alert Verification in Network Intrusion Detection Systems
	Preliminaries
	The Base-rate Fallacy
	False Positives in Signature-based Systems
	False Positives in Anomaly-based Systems

	Architecture
	The Output Anomaly Detector

	Benchmarks
	Tests with a Private Data Set
	Tests with the DARPA 1999 Data Set

	Related Work
	Conclusion

	Boosting Web Intrusion Detection Systems by Inferring Regular Languages
	Detecting Data-flow Attacks to Web Applications
	Exploiting Regularities
	Regular and Irregular Parameters

	Sphinx Detection Engine
	Building the Model
	The Regular-text Methodology
	The Raw-data Methodology
	Using the Model

	Benchmarks
	Comparative Benchmarks
	Testing the Regular-expression Engine
	Testing Sphinx on the Complete Input

	Signature Generation for Signature-based Systems
	Related Work
	Conclusion

	Panacea: Automating the Classification of Attacks for Anomaly-based Network Intrusion Detection Systems
	Architecture
	Alert Information Extractor
	Attack Classification Engine
	Implementation

	Benchmarks
	Tests with DSA
	Tests with DSB
	Tests with DSC
	Summary of Benchmark Results
	Usability in Panacea

	Related Work
	Conclusion

	Concluding Remarks

